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1. Introduction

Xuefeng Weil
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Xuefeng Wei
Email: xuefengwei99@163.com

1.1 Background

Mathematics is an important part of human culture. With the rapid
growth of information and digitization around the world, mathematical
literacy has become increasingly important to every citizen and an
essential competency that every citizen should possess in modern
society. Mathematical problem-solving ability is an important part of
mathematical literacy. Mathematics education worldwide has given
much attention to student problem-solving ability in the past few
decades. In the 1980s, the U.S. programmatic document for school
mathematics education, An Agenda for Action, explicitly stated that “the
mathematics curriculum should be built around problem solving.” In
September 2011, the Obama administration reauthorized the
Elementary and Secondary Education Act (ESEA), which focuses on
improving student learning and problem-solving skills (U.S.
Department of Education, 1965). Japanese mathematics education has
also attached great importance to “problem solving.” In 1994, Japanese
mathematics education started to implement the new mathematics
curriculum in an all-round way and added “teaching with the subject”
to the syllabus. The process of “teaching with the subject” is based on
the characteristics of “solving problems” in math classes (Zhang & Tang,
2005). The well-known Cockcroft Report (1982) emphasized, “Problem
solving should be regarded as an important part of curriculum theory.”
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In China, according to The Compulsory Education Mathematics
Curriculum Standards (2011 edition), “mathematics courses should
enable everyone to receive a good math education and to improve every
student’s ability further on the premise of admitting the individual
differences between students. Students’ capacity to discover and ask
questions is the foundation of innovation (Ministry of Education of the
People’s Republic of China, 2012).” In addition, the 2022 edition
(Ministry of Education of the People’s Republic of China, 2022)
highlights that the compulsory education mathematics curriculum
should enable students to develop the key competences needed for
social and personal development through the study of mathematics.
The cultivation of students’ ability to solve problems is an essential
educational function of mathematical thinking.

Improving students’ problem-solving skills is an effective way to
reduce their academic burden. The appropriate design of mathematics
questions and practical problem-solving strategies can support student
thinking processes and knowledge development to enhance their
conceptual understanding. Flexibility in mathematical thinking and
application is the ultimate goal of problem solving.

1.2 Focus of Study

The cultivation of mathematical problem-solving ability should be
based on the study of mathematical cognition. The 2011 and 2022
editions of The Compulsory Education Mathematics Curriculum
Standards (Ministry of Education of the People’s Republic of China,
2022) noted that “the content of the curriculum should respect the
rules of students’ cognitive development, including not only the results
of mathematics but also how the results are formed as well as the
mathematical thinking and methods entailed.” Furthermore, “teachers
should design instruction based on students’ cognitive level and
previous knowledge.” Finally, they emphasize: “The main purpose of the
evaluation should not only focus on the learning results but also attach
importance to the learning process.”

Early research revealed that teachers lacked an understanding of
students’ cognitive process of mathematics problem solving at the
primary school level. The teaching of mathematics is commonly based



on teachers’ personal experience, which often results in an incorrect
diagnosis of the problems experienced by struggling students.
Classroom interventions for struggling students have focused primarily
on asking students to correct errors by using the same instructional
direction that was originally used. This method fails to provide targeted
and meaningful interventions, and students have difficulty recognizing
and understanding their mistakes.

In recent years, the development of the learning sciences, especially
brain science, cognitive psychology, cognitive neuroscience and related
fields, has provided a broader basis for expanded research into the
cognitive process of solving mathematics problems. The learning
sciences involve interdisciplinary research into teaching and learning.
The primary objective of this field is to understand the cognitive and
socialization processes that result in the most effective learning. The
secondary objective is to design effective and innovative learning
environments, including school classrooms and informal settings
(Sawyer, 2005).

The teaching process depends on the learning process. Problem
solving is the core component of mathematical learning. Research on
the cognitive process of problem solving and analysis of student
mathematical learning can inform the cognitive rules of student
mathematical thinking. The aim of this study is to develop a
methodology that facilitates the analysis and description of the
cognitive process of mathematical problem solving in primary school
students.



1.3 Book Structure

Based on the achievements of previous scholarship, this book proposes
a method for problem solving via cognitive simulation. The
mathematics problem is used as an example to conduct empirical
research. In this book we discuss the application of cognitive analysis
and simulation in classroom mathematics teaching (such as the
cognitive process of elementary mathematics inquiry question design, a
“one-on-one” cognitive diagnosis mode and application, cognition
simulation of the interaction process in a mathematics classroom, etc.).
The book's organizational structure is as follows.

In this chapter: The research background is analyzed, and the
problem to be solved by the research is articulated.

Chapter 2: The core concepts of the research are defined. A
literature review of the process models of general problem solving,
mathematical problem solving, and the cognitive process analysis of
mathematical problem solving is presented.

Chapter 3: The key issues to be solved in this study, the research
methods adopted, the framework, the theoretical basis and the
significance of the research are described to ensure the authenticity of
the research questions, the scientificity of the method and the
operability of the research process.

Chapter 4: The process of solving typical problems is analyzed in
the sections “Numbers and Algebra,” “Graphics and Geometry” and
“Statistics and Probability.” The Polya mathematical problem-solving
model is further refined within the framework and construction of a
cognitive model for solving primary school mathematical problems.
The characteristics and application scope of the model are analyzed,
and its educational significance is presented.

Chapter 5: The problem-solving cognitive model established in
Chapter Four is constructed to enable an analysis of the problem-
solving process with respect to two typical problems of “different
denominator addition” and “mode.” The tools of the Adaptive Control of
Thought-Rational (ACT-R) framework are used to perform a cognitive
simulation. The analysis is conducted using six students from the fifth
and sixth grades of a primary school. The students are selected to
participate in an empirical study on the cognitive simulation results of



the two types of questions using the oral report method. The results of
this empirical study demonstrated that the results of the cognitive
simulation are consistent with those of the oral report.

Chapter 6: Based on Chapters Four and Five, the cognitive process of
mathematical problem solving is analyzed and simulated. The analysis
proposes the design basis and principle of the mathematical classroom
inquiry problem. It then takes the example of knowledge points such as
“mode” and “cylinder side area” to design typical inquiry problems,
apply them in classroom teaching, and analyze the effects of teaching
applications.

Chapter 7: The cognitive process based on mathematical problem
solving is analyzed and simulated. This chapter intensively captures a
series of cognitive operations and cognitive components in the process
of problem solving and explores the “one-on-one” cognitive diagnosis
process based on the cognitive model. It examines and identifies
students’ problem-solving cognitive processes, especially for students
with learning difficulties. It provides more detailed and targeted
guidance and advice on teaching practices to support and enhance the
individual development of students.

Chapter 8: On the basis of the introduction of “one-on-one”
cognitive diagnosis in Chapter Seven, Chapter Eight takes the typical
understanding of procedural knowledge and declarative knowledge as
an example to analyze the basis and process of typical problem design.
The oral report method, student questionnaires, teacher interviews,
and other methods are used to conduct an in-depth analysis of the
cognitive diagnosis process and its results and discuss the implications
for teaching mathematics.

Chapter 9: Based on research in the learning sciences, Chapter Nine
proposes a method to analyze classroom interaction from the
perspective of the cognitive process. It takes the “seventh-grade”
mathematics classroom “Looking from Different Directions” as the
research object to determine the typical classroom interaction and uses
the thinking model to analyze the question-answering process. It then
implements the cognitive simulation with the ACT-R framework. Based
on an analysis of the learning process, three suggestions for classroom
teaching are proposed to help teachers design more effective teaching
strategies.



Conclusion: The study’s main research results are summarized, the
process innovation is identified and assessed, and the shortcomings of
the study are discussed.
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2. Mathematical Problem Solving—A
Historical Perspective
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Xuefeng Wei
Email: xuefengwei99@163.com

2.1 Core Concepts

The precise definitions of the core concepts used in this study must be
established to clarify the study’s relevance, effectiveness, and
objectives. The core concepts used in the study are problem, problem
solving, cognition, cognitive model, cognitive simulation, ACT-R model,
and cognitive diagnosis.

2.1.1 Problem

The first step in problem solving is to define the problem, its nature and
its characteristics. For this purpose, Gestalt psychology’s definition of
the problem is widely cited: “When an organism has a goal but does not
know how to achieve the goal there is a problem” (Gilhooly, 1988).This
definition consists of the following four points:

Knowledge and abilities determine whether a problem exists. For
example, performing subtraction or addition involving three carries
may be a problem of significant difficulty for a first-grade student but
not for a high school student.

A problem no longer exists as a problem if the goal has changed or if
there is no longer a desire to solve the problem.
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Problems exist only when there is an awareness of differences
between the goal and the current situation.

Problems are goal oriented. They are conceived in relation to a
specific goal and thus end when the goal is achieved.

Newel and Simon classified problems into three types according to
their characteristics: well-structured problems, moderate-structured
problems and ill-structured problems (Newell, 1972). Anderson
categorized questions that students often encounter as well-structured
problems and ill-structured problems (Anderson, 2000). The problems
examined in this study are well-structured mathematical problems,
such as monism equation problems, arithmetic problems, and
cylindrical side area problems; these problems require the application
of mathematical knowledge.

2.1.2 Problem Solving

Cognitive psychologists commonly define problem solving as follows:

“Problem solving is defined as a series of cognitive processes that

points to the goal.” This definition consists of three parts:

(1)
Problem solving is goal oriented. It starts with an aim to achieve a
specific goal and ends when the goal is reached.

(2)
Problem solving consists of a series of operations. The
performance of operations typically requires a logical and
thoughtful approach.

(3)
Problem solving comprises a series of cognitive operations. It is
essentially a thinking activity. Problems in this study refer to
problems to be solved through a series of cognitive operations
and the application of mathematical knowledge.

2.1.3 Cognition

Cognition refers to an individual’s ability to acquire knowledge and
solve problems, that is, the process and ability of information
processing. The definition of cognition consists of two parts:

(1)

Cognition includes operations and abilities.



(2) Cognition comprises a series of thinking activities that occur from
the point in time when an individual reads a problem to the point
in time when the individual answers the problem.

2.1.4 Cognitive Model

The term cognitive model originated in the field of computer science
and refers to the simulation of the mental process of humans during
problem solving and psychological task processing. In many cognitive
psychology studies (Anderson et al., 2003; Baddeley & Logie, 1999;
Ericsson and Simon, 1993; Healy, 2005; Kalchman et al.,, 2001; Newell &
Simon, 1972; Siegler, 2005), this term has been used to simplify the
problem-solving process of human beings and is often likened to a
computational model that reflects the human cognitive process.
Research shows that cognitive models have effectively predicted and
explained the information processing procedures for many problem-
solving behaviors (Ericsson & Simon, 1993). The definitions of a
cognitive model can be summarized as follows:
(1) . . . o
A cognitive model is an abstraction and generalization of the
cognitive process that actually occurs.
2
) A cognitive model can effectively predict and explain problem-
solving behaviors. In this book, the term cognitive model refers to
the cognitive analysis framework.

2.1.5 Cognitive Simulation

Many researchers have applied a computational simulation approach to
understand the mental process of human problem solving. Based on the
cognitive model, problem-solving cognitive simulation first analyzes the
cognitive process of problem solving and then programs the cognitive
process sequences. It then simulates the process with computer
software to make the process of problem solving visible. Problem-
solving cognitive simulation assists in the understanding of complex
cognitive processes. A limitation of cognitive simulation is that student
motivation, feelings, emotions, attitudes and other factors are not
considered.



Although there are still many shortcomings of current computer
simulations of problem solving, the computer programs are logical,
consistent, and reliable. Computer simulation makes a significant and
essential contribution to the articulation of the problem-solving
process that is not possible through other methods. Computer
simulation combines some factors in the problem-solving process,
reconstructs this process, improves on the previous analysis of
experimental psychology, and opens up a path for understanding the
problem-solving process as a whole (Wang & Wang, 1992). With the
continuous development of artificial intelligence and brain science,
computer simulation will play a greater role in the study of problem-
solving cognitive processes. The visualization of simulation results will
provide reliable solutions for problem design, classroom interaction
and problem diagnosis.

2.1.6 ACT-R Model

The ACT-R model consists of the declarative knowledge and procedural
knowledge required for problem solving, the goal and a series of
cognitive operations to achieve the goal. The model uses the Lisp
language. In this book, ACT-R refers to the sequences of primary school
students’ problem solving and the ACT-R program (or sequence).

2.1.7 Cognitive Diagnosis

Cognitive diagnosis, also called cognitive assessment, is the diagnosis of
one’s knowledge structure, cognitive development, and cognitive
process (Leighton & Gierl, 2007). The definition of cognitive diagnosis
includes the following points:
(1) N .
Cognitive diagnosis is based on cognitive processes.
(2) N .
Cognitive diagnosis considers only cognitive factors. It does not
consider other factors, such as motivation, emotions, and beliefs.

2.2 Process Model of General Problem Solving
2.2.1 Literature Review



[. Newell and Simon’s problem-solving process model

The human and computer problem-solving model proposed by
Newell and Simon in their book “Human Problem Solving” can be
described as a model of problem-solving models (Newell & Simon,
1972). It can be used to explain a wider range of research on thinking
(Ericsson & Hastie, 1994). This problem-solving model is comparable
with the memory model (Atkinson & Shiffrin, 1968). Specifically, it
conceptualizes problem solving as a process of narrowing the gap
between the initial state and the target state through effective methods.
This model contains two phases, “forming the internal representation
of the problem” and “narrowing the gap between [the] current [state]
and [the] target state.” It proposes a “General Problem Solver, GPS”
computer program.

The process of problem solving considers two states, the initial state
and the goal state, and the combination of these states is the “problem
space.” Under the premise of the problem space and information
processing theory, the general process of problem solving can be
divided into the following two stages:

(1)
Understand the problem: The problem solver transforms (or
translates) the problem into psychological representations that
are to be placed in working memory in the form of propositions,
images, etc. The representations are stored in the brain in an
internal form or represented externally.

2

) Find a solution: The information stored in working memory starts
to activate the knowledge stored in long-term memory to enable
the extraction of relevant knowledge and the selection of
strategies and methods applicable to the problem. When an
effective solution to the problem cannot be found, it becomes
necessary to revise the original problem representation. If the
problem can be successfully solved, then the internal problem
representation is sufficient to represent the problem. In this case,
the problem representation is further embedded in long-term
memory and becomes new knowledge.



II. Dewey’s problem-solving process model

In his book How We Think, Dewey (1859-1952) detailed the
thinking process of problem solving and proposed a five-step solution
to a problem (Dewey, 1910): (i) a felt difficulty; (ii) the location and
definition of the problem; (iii) the suggestion of a possible solution; (iv)
development through the reasoning of the bearings of the suggestion;
and (v) further observation and experimentation leading to the
acceptance or rejection of the proposed solution. Dewey suggested
teaching math through a problem-solving approach across all grades
and all courses. Ausubel (1978) noted that in the general description of
the stage of the cognitive process of problem solving, no significant
improvements to Dewey’s description have been made for more than
60 years.

11
Gick’s problem-solving process model

Gick et al. proposed that the universal problem-solving process
consists of four stages: problem understanding and characterization,
seeking answers, solving the problem and evaluating the solution. The
specific process is shown in Fig. 2.1 (Chen, 2005).

Fig. 2.1 Gick’s problem-solving process model

(1)

Problem Understanding and Characterization

Gick et al. argued that the first step of problem solving is to
determine what the problem is. This step articulates the problem to be
solved and the existing given conditions; the problem space is created
based on this information. This process includes identifying relevant
information, forming a semantic understanding, developing an overall
characterization, and problem classification.



(2) Seeking Answers

If, after the problem is understood and characterized, the problem
solver fails to activate a particular schema, then the problem solver will
start looking for a solution. Some commonly used problem-solving
strategies are algorithmic strategies, means-purpose analysis, hill
climbing, and reverse reasoning.

(3)

Solving the Problem

An attempt to develop a solution to the problem corresponds to the
process of implementing the solution plan. This step occurs after the
problem has been characterized and a problem-solving strategy has
been formulated. This process is relatively simple, but it is often
overlooked, which leads to errors.

(4) _
Evaluation

Once a problem answer has been developed, it needs to be
evaluated. The evaluation process looks for evidence to confirm or
refute the utility and accuracy of the answer. If the answer is proven to
be correct, the problem is resolved. If the answer is not correct, the
problem-solving process returns to phase 2 or another phase as
appropriate and is performed again from that point.

IV.
Anderson’s ACT-R Model

The ACT-R model was developed and established by John R.
Anderson and his colleagues, a group of artificial intelligence educators
and psychologists from Carnegie Mellon University. It is a framework to
simulate and help explain theories of human cognition. ACT-R
researchers have invested substantial effort in understanding how
people organize knowledge and produce intelligent behavior. Since
1976 the ACT-R theory has been, evolving from the initial ACT-E model
to the current ACT-R model. “R” stands for rationality, which represents
“the best way to achieve human goals (Anderson, 1990).” As research
has progressed, the ACT-R model has been used to perform a large




number of human cognitive tasks through detailed analysis of human
perceptions, reflections, and responses to the external environment.
ACT-R is called “a simple theory of learning and cognition.” This

theory holds that complex cognition consists of knowledge units that

are obtained through simple principles. Human cognition is highly

complex. This complexity is manifested in the complex combination of

basic elements and principles, similar to how computers perform

complex tasks through simple operations. To accomplish complex tasks,

ACT-R requires that each element of the task must be mastered. The

basic knowledge required to utilize ACT-R is a prerequisite. Anderson et

al. noted that ACT-R theory provides “important new insights” into

human cognitive activity, including the following (Anderson, 2000):

(1) . . |
ACT-R is based on the cognitive theory of production systems,
which can construct all the features of cognitive behavior from a
simple psychological system.

2

) ACT-R can predict human behavior through information

processing, which itself can produce intellectual behavior.
3

) ACT-R has successfully been used to establish models for high-
level cognitive activities, including scientific reasoning, skills
acquisition, and human-computer interaction.

ACT-R theory categorizes knowledge into declarative knowledge
and procedural knowledge. Declarative knowledge is “the knowledge of
what it is” and refers to the type of knowledge that people know and
can express (e.g., China’s capital is Beijing, and 1 + 2 = 3). In ACT-R,
declarative knowledge is characterized as small units of primitive
knowledge that are called knowledge chunks. Procedural knowledge is
“the knowledge of how to do it” and refers to the regular units used to
extract declarative knowledge chunks, also known as productions.
Squire et al. provide neurological evidence that distinguishes between
declarative and procedural knowledge (Squire et al., 1993). Ongoing
research into cognitive neuroscience is providing the most up-to-date
evidence on more neuronal mechanisms. For example, Graybell found
that the basal ganglia are involved in the process of encoding
information in the cerebral cortex and are responsible for automating




the sequence of actions (Graybell, 1998). One of the consequences of
this process is that the sequences that are conscious and slow become
automatic and faster.

The ACT-R model is shown in Fig. 2.2. The structure of the model
reflects the assumptions of human cognition that are developed based
on empirical evidence from psychology experiments. It includes
modules, buffers, and pattern matches.
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Fig. 2.2 ACT-R cognitive module

There are two types of modules in ACT-R: perceptual-motor
modules and memory modules. The perceptual-motor modules are the
interfaces with the real world. The best perceptual movement modules
in ACT-R are the visual module and the movement module. ACT-R also
includes two memory modules: declarative memory, which contains
facts (e.g., Washington is the capital of the United States, 1 + 3=4); and
procedural memory, which comprises productions that represent the
knowledge of how we do what we do (e.g., how to drive, how to
perform addition).

The interaction between the modules in ACT-R (with the exception
of the perceptual-motor modules) is performed through buffers. Each
module has a dedicated buffer that serves as the module’s interface.
The contents of the buffer at a particular moment characterize the state
of the ACT-R model at that moment.

The pattern matcher looks for productions that match the current
state in the buffer. Multiple productions can be matched at a given time,
but only one production run is executed. The contents of the buffer are
modified during production, changing the state of the system. Hence,
cognition in ACT-R is represented as a series of activations of
productions.

Many scholars in China have performed a large amount of
theoretical and practical research on the cognitive process of problem



solving. Wen Gao et al. argued that the general process of problem
solving can be attributed to the following five stages: (1) identification
and definition of the problem; (2) selection and application of
strategies to solve the problem; (3) characterization of the problem; (4)
resource distribution; and (5) monitoring and evaluation. Jiang and
Yang (2002) divided the problem-solving process into two parts: task
understanding and implementation of the operation. Figures 2.3 and
2.4 show the models for task understanding and execution, respectively.
The problem-solving information processing mechanism is driven by
concepts, with psychological resources flowing in an orderly manner
between the processing and automation of partial processing.

Fig. 2.4 Problem solving in the operation of all modules

2.2.2 Summary

According to Simon, the process of human information processing is a
single-linear system that performs a series of activities because a
human can only think of and do one thing at a time. People are a single-
linear system (Simon, 1978). The proposed problem-solving
engineering model provides a precise prediction for certain types of
problem-solving behaviors and thinking tests. Hence, human thinking
no longer appears mysterious (Newell & Simon, 1961). It is a functional
description, is abstract, and is unrelated to the structure. The general
problem-solving process and general problem-solving strategy do not
consider subject knowledge.



Anderson’s ACT-R model provides an abstract cognitive structure
that describes the cognitive model from a functional point of view only.
ACT-R has been applied in many fields and has achieved some
promising results. However, the ACT-R model and problem-solving
process are not the same, and many problems still need to be studied.
(1) . . . . .
ACT-R is a serial process of implementing a solution to a problem
after the problem has been identified. It does not indicate how the
problem is to be determined. The problem is conceived when a
goal is identified and ends when the goal is achieved. The
determination of the goal is a crucial step in the problem-solving
process.

(2) . . . .
ACT-R lacks advanced thinking or tactical options. Solving a
problem involves applying a strategy, and the selection of the
appropriate strategy is the key to successful problem solving.
When people solve problems, they usually extract strategies that
have previously successfully solved similar problems from their
long-term memories and form a new strategy to solve the
problem. Formulating the strategy is an essential part of problem
solving.

(3) . . .
ACT-R introduces only the general cognitive process, without
highlighting a specific process. For example, the model mentions
the comparison of relevant information in long-term memory but
does not provide any further explanation. It is therefore difficult
to design an ACT-R program using this limited guidance.

4

*) ACT-R is a common cognitive model that does not consider the
characteristics of the subjects. Due to the differences in subject
content, the process of problem solving will differ. The
construction of a cognitive model should consider the
characteristics of the subject content to ensure that it is closely
related to the subjects.

To summarize, ACT-R analysis is a linear and symbolized process,
whereas the real-world problem-solving process is nonlinear. Many
other events may occur concurrently with the process of problem



solving, such as reflection on the selection of strategies, calculations,
and a determination of whether the problem-solving process is

complete.

2.3 The Process Model of Mathematical

Problem Solving
2.3.1 Literature Review

I

. Polya’s “table of how to solve the problem”

A famous mathematician and mathematics educator, George Polya
(1887-1985) is a landmark figure in the field of mathematical problem-
solving research. In his book How to Solve It, Polya (2012) proposed
four steps of problem solving as shown in Table 2.1.

Table 2.1 Polya’s four-step approach to problem solving

(1) Understand the problem:
Unders.tand What are the unknowns? What are the known data? What are the conditions? Is it
the topic possible to meet the conditions? Are the conditions sufficient to determine the
unknowns? Or are they not enough? Or redundant? Or contradictory?
Draw a picture and insert an appropriate symbol
Please separate the different parts of the condition
(2) Identify |Proposed solution:
the . . | Have you seen it before? Or have you seen the same topic appear in a slightly
relationship | jitrerent form?
between _
known data | D0 youknow arelated topic? Do you know a theorem that may be useful?
and Observe the unknowns! Moreover, try to come up with a topic you are familiar
unknown with the same or similar unknowns
data Once you have identified a topic related to your question that has been solved
If you before, answer the following questions: Can you use it? Can you take advantage of
cannotfind |its results? Can you take advantage of its methods? To apply it, do you need to
a directlink, | introduce any auxiliary elements?
ﬁg:é‘gy Can you recount this topic? Can you describe it in a different way?
consider Revisit the definition
secondary |If you cannot solve the problem, try to solve a related topic. Can you think of a
topics topic that is easier to solve? A more general topic? A more specific topic? A
Inthe end, |similartopic? Canyou solve part of the problem? Keep only a portion of the
you should |conditions, and set the other conditions aside: to what extent can the unknown




be able to be known (or defined)? How does it change? Can you derive useful information
find a from the known data? Can you think of other suitable known data to determine
solutionto |the unknowns? Can you change the unknowns or the known data or change both
the problem | if necessary so that the new unknowns and the new known data are closer to
each other? Have you used all the known data? Have you used all the conditions?
Did you consider all the key concepts in the title?

(3) Execute |Execute the plan:

your plan Run your solution and check every step. Can you confirm that each step is

correct? Can you prove that the solution is correct?

(4) Check Review:

the ) Can you test the result? Can you test the argument?
obtained T _
answers Can you deduce the result in different ways? Can you see it at a glance?

Can you apply the result or the method to other topics?

The four steps of Polya’s problem-solving approach have far-
reaching implications for mathematics education. The works of today’s
well-known problem-solving experts in mathematics education, such as
Kilpatrick and Schoenfeld, are all based on Polya’s work.

I1.
Schoenfeld’s mathematical problem-solving approach

Schoenfeld stressed that four factors should be considered in
mathematical problem solving: the knowledge base, problem-solving
strategies, self-control, and belief systems (Schoenfeld, 1985). His
research revealed that cognitive factors play a key role. According to the
metacognitive point of view, he divided the problem-solving process
into six stages: reading, analyzing, exploring, planning, implementing
and testing. Figure 2.5 shows a flowchart of the stages of problem
solving.

Fig. 2.5 Schoenfeld’s problem-solving flow chart




The explanation of the five stages is as follows:

The first stage is analysis. This stage includes analyzing what the
problem means, what the known conditions are, what is required,
whether the target appears to be compatible, which major principle or
system is relevant or must be observed, and which part of the problem
relates to mathematical content, among other considerations.

The second stage is planning. In a sense, planning is a “master
control mechanism.” Planning is not an independent step; it underlies
the whole problem-solving process. Its purpose is to ensure that the
activities carried out are beneficial.

The third stage is exploration. Exploration is the heart of problem
solving since the main activities of problem solving are carried out at
this stage.

The fourth stage is implementation. It entails the process of
implementing a solution to the problem and is the final stage of actually
solving the problem.

The fifth stage is testing, a step that should receive more attention.
Students seldom check their results; however, checking the results is
valuable and important.

To summarize, Schoenfeld's mathematical problem-solving model is
based on the work of Polya. His model has been widely recognized in
mathematics education.

Regarding the cognitive process of mathematical problem solving,
cognitive and mathematical psychologists Lewis & Mayer and Kintsch &
Greeno proposed distinct theoretical models along with detailed
explanations, which are described below.

11
Lewis and Mayer’s mathematical problem-solving model

Lewis and Mayer (1987) noted two important components of
mathematical problem solving: problem characterization and solution
implementation. Solving mathematical application questions involves
characterizing the problem and then applying mathematical or
algebraic rules to formulate a solution to the problem. Previous studies
(Anand et al. 1987) have shown that the primary difficulty faced by
children in solving problems is problem representation rather than



calculation. There are two subcomponents of problem characterization
(Xin, 2005):
(1) . . .
Translation of the question sentences, especially to understand
the sentences that indicate the causal relationships. Previous
studies noted that it is very difficult to characterize the sentences
of causal relationships, and children often ignore or
misunderstand causal relationships.
2
) Identification of the type of problem. A child learns to classify
problems into various types, that is, to identify a variety of
problem-type schemas. If students want to grasp a schema, it is
necessary to identify the semantic relations contained in the
question. Greeno analyzed the problem-solving process of
geometry and math problems and described the knowledge and
tactics used to understand and solve a problem. Rily and Heller
(1983) noted that as long as children grow, their ability to
understand the problem gradually strengthens. These researchers
categorized arithmetic application questions into three types
according to semantic relations based on conceptual terms such
as additions, subtractions, mergers, and comparisons:
1
() Cause-change problem. Cause-change problems describe an
increase or decrease in the number of things as a result of
additions and subtractions (e.g., “If John has three apples and Jane
gives him two apples, how many apples does John have now?”).
2
) Combination problem. A combination problem contains a fixed
number, and the problem solver needs to perform merging or
factoring operations (e.g., “John has three apples, and Jane has two
apples. How many apples do they have in total?”).
3
) Comparison problem. A comparison problem compares the sizes
of two invariable quantities (e.g., “Jane has two apples, and John
has three apples more than her. How many apples does John
have?”).

(3) Green found that students experienced the greatest difficulties in



characterizing and solving comparative problems. Lewis et al.
(1987) and Verschaffel et al. (1992) found that students
encountered more difficulties when the relational words in the
comparison were not consistent with the required arithmetic
operations.

(4)
To explain this difficulty, Lewis and Mayer (1987) constructed a

model to compare problem understanding processes. The model
focuses mainly on the comparison problem that requires a one-
step calculation. These types of problems often begin with an
assignment sentence that states the value of a variable (e.g., “John
has three apples.”). This sentence is usually followed by a causal
relation sentence that defines a variable about another variable
(e.g., “He has two more apples than Jane does.”). Finally, a question
about the value of an unknown quantity is posed (e.g., “How many
apples does Jane have?”).

Lewis and Meyer proposed the hypothesis of consistency, which
claims that students show a preference for a specific sentence order.
Specifically, students prefer that the sentences be stated in the order
consistent with the question. The model shows that when the order in a
causal relation sentence does not match the order of students’
preferences, more misunderstandings will occur.

IV.
According to the model, there is also a particular preference for the

presentation forms of comparison problems. When the form of a
given causal relation sentence in the question is not consistent
with the student’s schema, students must rearrange the existing
information, and errors may occur during this process. Verschaffel
et al. (1992) conducted eye-tracking experiments and revealed
that the model is reasonable only when the task performed by the
participants has certain cognitive requirements.

The main components of Kintsch and Greeno’s mathematical
problem-solving model are a set of knowledge structures and a set of
strategies for using these knowledge structures in constructing
problem representations and performing problem solving (Kintsch &
Greeno, 1985). Characterization is twofold: on the one hand, itis a



textual frame that characterizes textual input; on the other hand, it is an
abstract question representation or problem model that contains
question-related information derived from the textual framework.

The model includes two sets of knowledge structures used to
characterize and solve problems: (1) a set of propositional frameworks
for converting sentences into propositions and (2) a set of schemas that
characterize the relationships between features and collections in a
general form, which are used to construct macrostructures and
problem patterns. After characterization is completed, the problem-
solving stage begins.

Other researchers have also investigated the mathematical
problem-solving process. Ausubel and Robinson (1969) took geometric
problems as prototypes and proposed a problem-solving model. They
noted that problem solving generally involves four stages: presenting
the problem situation proposition, identifying the problem'’s objectives
and the known conditions, filling the gap, and testing the proposed
solution to the question. Mayer argues that the cognitive process of
solving an application question can be divided into four phases:
characterizing the questions, synthesizing the questions, formulating
and adjusting the solution, and implementing the solution (Mayer,
1984).

Starting from the cognitive processing of problem solving, Yu
(2008) matched the phases of problem solving with cognitive
processing, resulting in the cognitive model of mathematical problem
solving shown in Fig. 2.6. He asserted that mathematical problem
solving is the process of extracting a problem-solving schema from
long-term memory to apply in a new problem situation. He divided
mathematical problem solving into four stages: understanding the
problem, choosing the operators, applying the operators and evaluating
the results. The cognitive processes corresponding to these four stages
are problem representation, pattern recognition, problem-solving
migration, and problem-solving monitoring.



Fig. 2.6 PinYu's mathematical problem-solving cognitive model

Zhang and Guan (1997) divided the cognitive process of elementary
mathematics application into three phases: characterization, problem
solving and thinking summary. Zhu (1999) proposed a “four-step
feedback” program for solving mathematical problems. He argued that
the psychological process of solving mathematical problems can be
divided into four stages: awareness of the existence of the problem,
characterization of the problem, determination of the problem-solving
strategy, evaluation, and reflection (He, 2004).

2.3.2 Summary

Lester noted that a serious consequence of the inadequacies of the
Polya model is that meta-cognition is largely ignored by research
conducted on the basis of this model. Specifically, this approach focuses
only on heuristics. However, the application of algorithms and
heuristics depends on complex thinking activities, most of which may
be explained by the use of meta-cognition. Many efforts to improve
student problem-solving abilities are therefore not successful. The
reason is that teaching education overemphasizes the development of
heuristic abilities and neglects the regulatory power necessary for
adjusting individual behaviors. Although the details of the Lewis model
and the Kintsch model are different, both consider that the problem-
solving process consists of two main components: problem
understanding (or problem characterization) and problem solving (Xin,
2005). In problem understanding, students convert the question text
into a semantic representation. Essentially, students reconstruct the
problem to solve it. In problem solving, students implement a strategy
to solve the problem.

Significant research has focused on the mathematics problem-
solving process of elementary school students and has made great



strides toward improving their skills and problem-solving abilities.

However, many problems still need to be further explored:

(1) . o
Psychology divides the process of problem solving into different
stages, and the division is relatively approximate. Although some
models (such as Gick’s and Yuping’s models) analyze the
corresponding cognitive processing stages in the process of
problem solving, these models do not consider the cognitive
characteristics of elementary school students. The analysis and
research on each stage of the cognitive process lack sufficient
depth.

(2) |
Psychology has researched parts of the problem-solving process,
such as problem characterization and problem patterns. However,
it does not address the entire cognitive process of problem
solving. Therefore, researchers need to conduct comprehensive
analyses and research on the complete process of problem
solving.

3) | y -

The analysis of the cognitive process of problem solving is
conducted only for the purpose of “analysis”; it does not apply the
analysis to teaching.

2.4 Analysis of the Cognitive Process of

Mathematical Problem Solving

2.4.1 Representation in the Process of Problem Solving

Representation is a central aspect of problem solving. If a problem is
correctly represented, it can be said that half of it has been solved
(Simon, 1986). Wertheimer (1985) noted that the typical approach to
problem solving involves generating a reasonable problem
representation; that is, the problem should be properly organized.
Representation is a critical step of problem solving. An appropriate
characterization should satisfy the following three conditions: (1) the
representation corresponds to the real structure of the problem; (2) the
problem components in the representation are properly combined; and



(3) the representation involves the application of problem solvers’
other knowledge. The results of Kaplan and Simon (1990)’s research
show that the insight of problem solving is the result of appropriate
problem representation and that suitable representations can be
obtained by identifying strong constraints to guide the search and thus
make the search highly effective. The characteristics and knowledge of
the fields are the main sources of strong constraints, and they can guide
the subjects to generate specific and effective problem representations.

Kintsch and Greeno (1985) suggested that the key to solving a
mathematics problem is the representation of the problem. The
representation of a problem is twofold. On the one hand, it represents
the textual input and the proposition of the textual frame
(propositional text base). In arithmetic problems, the basic
propositional text frame is the relationship between sets. Problem
solvers must translate linguistic inputs into such a text framework. On
the other hand, it is an abstract problem representation or problem
model (problem model) that contains text frames, questions,
information, and letters from problem solvers in the field of arithmetic
problems. The problem model includes three sets of knowledge
structures used to characterize and solve the problem: (—) is used in
the problem model to translate a sentence into a set of propositional
frames (propositional frames); () is used as a general set of schemata
(schemata) of the relation between the formal characterization and the
set; and (=) is used as the general form to represent a set of action
diagrams (action diagrams) of computational and arithmetic
operations. The problem solver should infer the information needed in
the text but not in the text frame when they construct problem models
and should exclude any unnecessary information for solving the
problem within the framework. After the problem is correctly
characterized, the problem solver can start solving the problem. At this
stage, they may need to apply problem-solving programs (or
sequences).

Ashcraft (1992, 1995), Campbell (1995), Thevenot et al. (2007)
found that people directly extract answers from long-term memory
when solving simple arithmetical problems. Campbell (2001) and
Seyler et al. (2003) found that people adjust their calculation methods
according to the operation type and tend to use extraction to perform




addition and multiplication operations but deduction for subtraction
and division operations.

The results of Qinsikaya’s experiment proved that the processes of
answering application questions and other questions are the same.
Namely, they entail analysis and synthesis (Qinsikaya, 1962). The
results of experiments by Zhu and Bai (1964) revealed that students
could not answer application questions simply via the process analysis
method or the comprehensive method, which is considerably more
complex than the application of these two methods. The cognitive
process of students’ answers to compound applications can be divided
into three stages: grasping the subject directly in relation to the things,
revealing hidden things, and testing hidden things. Among them,
revealing hidden things is the basic stage of solving application
questions, and four types of intelligence operation are explored by
abstracting words, replacing images, demonstrating activities, changing
conditions and performing practical operations.

Zhu (1983) studied the function and performance of pattern
recognition in solving students’ geometry problems. The results
indicate that when working on geometric problems, students need to
first identify and classify the problem and then recognize the geometric
patterns, with the goal of solving the problem effectively from the given
problem situation. Tieru analyzed the verbal outputs of subjects while
they were solving problems and found that in solving algebraic
equations, these outputs were used mainly for the identification of
types of pattern recognition problems. The participants could identify
the types of questions that they could quickly and accurately answer
and the type of application questions. Moreover, they could distinguish
these questions from the need to determine the structural relationship
between the semantic context of the specific topic and the general
topic, which depends not only on participants’ understanding of the
current problems of information processing but also on the relevant
information stored in the memory search (Shi, 1985). Xie constructed a
cognitive process model of the abacus (Xie, 2009). Fu and He used
intelligent mathematics questions for experimental homework. They
analyzed the results of question representation and problem solving
among 34 university students and explored the information processing
process during question representation. The results suggest that the



information processing process of problem representation can be
divided into three stages: searching for and extracting problem
information, understanding and internalizing problem information, and
discovering metaphorical constraints (Fu & He, 1995).

2.4.2 Representation in the Process of Problem Solving

Studies of the problem-solving process of math application problems
show that problem representation can be divided into two stages:
sentence representation and structural representation.

Many studies from China and abroad have focused on sentence
representation. Zhang (1997) divides the sentences of the application
problems into sentences that describe the context, sentences that
assign values, question sentences, sentences that describe relations,
and compound sentences. The first three sentences are easier to
understand, while the other two sentences are the most difficult parts
to understand and are key to problem representation. Mayer’s research
found that the representation of sentences that describe relations is
particularly difficult. When the content of the topic is retold by the
problem solver, the problem solver often misses the sentences that
describe relations or incorrectly describes the relationship feature and
even confuses the sentences that describe relations with the sentences
that assign values (Mayer, 1987). Lewis and Mayer (1987) noted that
sentences that describe relations define a variable based on another
variable, and the problem is finding the value of another variable. Their
studies on the representation of relation sentences in an experimental
setting revealed that it is more difficult to make representations “when
the required arithmetic operation is different from the words
mentioned in [the] relation sentence.” Lewis and Mayer (1987) studied
the factors influencing the representation of sentences and found that
the overall representation directly affected sentence representation and
that students’ representation of sentences improved significantly when
they received training on representation sentences and overall
representation (Leiwis, 1989).

Some scholars have studied comparative sentence representations
in depth. Riley and others asked students to listen to application
questions and then asked the students to repeat them. Bernardo and
others examined the role of symbolic knowledge and the problem-



information context (PIC) in the process of transforming relation
sentences into mathematical equations through four experiments and
showed that relation sentences are the most difficult parts for a student
to comprehend in performing problem representation. The researchers
advocated specialized training on the representation of relation
sentences (Bernardo & Okagaki, 1994).

Among studies of sentence representation factors, Loftus and
Suppes (1972) found through eye movement experiments that schema
knowledge and linguistic competencies are closely related to sentence
representation. Gooney and Swanson (1990) argued that the problem
schema is closely related to the representation of the relation and
problem sentences. The students with a smaller memory capacity could
barely recall relation sentences, and the number of relation sentences
that students with a larger memory capacity could recall was even
lower.

2.4.3 The Role of Schemas in the Process of Problem
Solving

In the process of problem solving, the perception of the problem
situation, the understanding of the problem, and the formulation of the
problem-solving method are affected by the schema. Bernardo asserted
that the problem schema is a combination of principles, concepts,
relationships, procedures, rules, operations, and others that are related
to the type of problem (Bernardo, 1994).It consists of many aspects: (i)
it is an organized knowledge block related to problem solving; (ii) itis a
summary and abstraction of successful examples of problem solving;
(iii) it can be activated by certain cues in the current problem scenario
to predict some unknown cues, which contributes to the formation of
problem representation; and (iv) it combines strategies, methods, and
procedures of problem solving and even automated operating
procedures. Hence, it guides the entire problem-solving process.

Regarding the influence of schemas on the perception of problem
situations, Gilhooly argued that correct problem perception is similar to
suggesting a problem schema, which implies a direct, prototype-like
problem-solving approach (Gilhooly, 1988), and that problem
perception is closely related to the schema.



The schema is closely related to problem understanding. Knowledge
is a semantic network organized by a number of interconnected nodes.
The information provided by the problem activates a node in the
semantic network, which in turn activates the relevant network, that is,
the relevant schema. The schema can provide information and
knowledge to problem solvers and help them understand the problem.
Best noted that once the schema knowledge is activated, it guides the
problem solver to search the problem space in a specific way and to
seek the relevant features of the problem, thus helping to improve the
efficiency of problem solving (Best, 2000).

To address different types of mathematical problems, we need to
choose an appropriate schema to guide the problem-solving process.
Meyer’s research on solving geometric application problems shows that
the key to solving geometric application problems is finding suitable
schemas (Mayer, 1981).

The schema not only has an impact on problem solving but also
provides an important basis for students to obtain the solution.
Students can use existing schemas when solving familiar math
problems. When solving new math problems, students can apply an
existing schema to guide the process, modifying the schema
continuously during the process to ultimately form a new schema.
Therefore, problems and problem solving are mutually influential.
Simon noted that once a person or a computer program determines the
schema required for the problem and the data required for each
schema, these schemas are combined to form a new schema—the
problem schema—that indicates each part’s relationship (Simon,
1986). Forming a problem schema comprises three processes:
excluding surface problems, generalizing, and constructing, while
moving the focus from the surface level to a deeper level. First, the
process of exclusion entails excluding unimportant details from the
surface description, which reduces the amount of information stored.
Second, the process of summarization also reduces the stored
information while simultaneously transforming it. Third, in the process
of construction, there is no longer a reduction but rather an increase in
information, including the inference of information that is not directly
expressed (Li & Wang, 2000), which is also called information beyond
actual presentation. The schema is formed through the active cognitive



construction of the subject. The process of forming a schema based on
understanding is not easy to forget and facilitates migration.

2.4.4 Problem Representation and Problem-Solving Effects

Regarding the relationship between problem representation and
problem-solving effects, Anderson found that different representations
of problems can produce different problem-solving effects (Anderson,
1993). Anand (1987) revealed that students’ incorrect answers to
application questions are caused mainly by incorrect representations of
the problem structure rather than by computational factors. Yu (2003)
proposed the concept-field, concept-system, proposition-field and
proposition-system (CPFS) structural theory of mathematics learning.
It is believed that students with excellent CPFS structures can more
effectively and correctly represent problems and can solve problems
and that students who can reasonably represent problems have better
CPFS structures. Li et al. (2002) and analyzed the differences between
eugenics and students with learning difficulties among 40 third-grade
primary school students. The results revealed the following: (1) The
differences between high- and low-problem-solving ability students are
significant. The differences are related to the representation strategies
that students apply in problem solving. (2) The main error that
students make in solving the comparative problem is a conversion error
and that their error in the inconsistency problem is greater than that in
the consensus problem. (3) There are significant differences between
the two groups of students’ metacognitive knowledge and monitoring
skills. Metacognitive monitoring skills have a significant predictive
effect on the ability to solve comparative problems (Li et al., 2002).

2.4.5 Review

Based on the discussion above, problem representation plays an

important role in the ability to solve application problems. Although

this topic has been deeply studied in the field of psychology, some

issues remain to be studied:

i

2 Studies on problem representation reveal only the characteristics
of the representations of problems made by students and rarely
explain the reasons for these characteristics.
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(ii)
solving. It does not reflect the entire cognitive process of problem
solving. It is therefore necessary to conduct a comprehensive

analysis to understand the entire problem-solving process.

2.5 Summary

To improve the relevance and effectiveness of this study, this chapter
first defines the core concepts in the study to clarify its significance.
The core concepts include problems, problem solving, cognition,
cognitive model, cognitive simulation, ACT-R model, and cognitive
diagnosis.

Then, the process model of general problem solving, process model
of mathematical problem solving, mathematical problem-solving
cognitive process analysis and other aspects of the status of research in
China and abroad are analyzed. Through this analysis, we found that a
large body of research has focused on the process model of
mathematical problem solving and cognitive analysis and has made
great contributions. However, many problems remain unknown and
need to be further explored.

(1) _ _
Psychology has conducted in-depth research on certain aspects of
problem solving, such as problem representation and problem
schema. It has not revealed the cognitive process of the entire
problem-solving process. Thus, more comprehensive analysis and
research on the entire process are needed.

2

) Although great progress has been made in the field of computer
simulation of mathematical problems, it has been achieved from a
machine or computer perspective, which is very different from
solving a math problem in a classroom setting. Research has not
considered the process of students’ problem solving. The methods
used to solve these problems are often beyond the scope of
knowledge available to students; hence, they are unable to
provide help and guidance for teaching.

(3) Aresearch team led by Professor Anderson at Carnegie Mellon

University studied the cognitive process of math problem solving.
ACT D +lhanwrtr varne mrAnnAcn A+ vvida +ha cirmanilatian Aand
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understanding of human cognition, but it does not provide

solutions for analyzing the cognitive process of elementary school
students’ ability to solve math problems.
4
*) The existing research provides an analysis of math problem
solving from its own perspective. It fails to synthesize the
research results of related disciplines and to conduct
interdisciplinary studies.

A review of related works provides insights into some remaining
questions and serves as the basis for this study.
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3.1 Research Questions

A review of the literature reveals that a large amount of research on
problem solving has been conducted, especially in the field of
mathematical problems. However, many research questions require
further study:

O | |
In the field of psychology, the analysis of mathematical problem
solving has conducted only a certain part of the process of
problem solving in depth but has not considered the entire
process.

(2) . . -
The existing process model of mathematical problem solving is a
general model for all mathematical problems and does not
consider the cognitive characteristics and mathematical
characteristics of students in different stages.

3

) The research team led by Anderson, a professor at Carnegie
Mellon University in the United States, conducted an in-depth and
meticulous study on the cognitive process of mathematical
problem solving and developed the ACT-R model. However, they
did not provide any suggestions on how to formulate a
mathematical solution with the ACT-R model.
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Therefore, the key questions addressed in this book are as follows:
how can the cognitive process of solving mathematical problems in
elementary schools be analyzed, and how can an ACT-R model for
solving mathematical problems in elementary schools be constructed?
The research problem can be decomposed into the following three
subproblems:

(1) . . . .
How can a cognitive model for solving mathematical problems in
elementary schools be constructed?

2

) How can the problem-solving process be analyzed based on the
cognitive model to build an ACT-R model of mathematical
problem solving for elementary school and conduct cognitive
simulation?

(3)

What is the role of cognitive process analysis in math education?

This book analyzes the solutions of mathematical problems in terms
of the cognitive process. The impact of noncognitive factors such as
attitudes, emotions, motivation, and beliefs on problem solving is
beyond the scope of this study.

3.2 Research Framework

The research framework contains three parts, which are shown in
Fig. 3.1.




Fig. 3.1 Research framework

3.2.1 Construction of the Cognitive Model of Elementary
School Mathematics Problem Solving

A cognitive model is constructed to analyze the elementary
mathematics problem-solving process. Elementary school students
employ different problem-solving methods than adults do because of
differences in the characteristics of their thinking and memory
development. The typical problems of elementary school mathematics
are taken as the analysis object. Considering the psychological
characteristics of elementary school students, combined with cognitive
psychology, cognitive neuroscience, brain science, and other research, a
cognitive model of elementary school mathematics problem solving is
constructed.

3.2.2 Elementary Mathematics Problem-Solving ACT-R
Model Construction and Cognitive Simulation

The cognitive model is the basis of cognitive simulation. Cognitive
simulation refers to selecting typical problems, using the cognitive
model to analyze the cognitive process of problem solving, and using
the Lisp programming language to write a cognitive program and
simulate it with respect to ACT-R. To verify the validity of the
simulation, we selected some students for an oral report experiment
and then compared the simulation results with oral report
experimental data to determine whether they were consistent. With
respect to the problem-solving error, the cognitive model can be used to
analyze the cause. The simulation of the problem-solving cognitive
process can visualize the “internal process,” which helps to identify the
characteristics of the problem-solving process.

3.2.3 Application of “One-On-One” Cognitive Diagnosis and
Intervention Based on a Cognitive Model in Teaching

The problem-solving cognitive process is analyzed with respect to
solving the practical problems of mathematics teaching. This analysis
covers the design of elementary school mathematics problems that are
based on cognitive process analysis and “one-on-one” cognitive



diagnosis and intervention for students with mathematics learning
difficulties.

The design of the elementary school mathematics problem is based
on the psychological characteristics and mathematics curriculum
analysis of elementary school students and the design basis and
principles of the cognitive process. The typical knowledge areas of
elementary school mathematics are selected for analysis and design.
The typical inquiry of design is applied in elementary school
mathematics classroom teaching, and the application effect is analyzed.
The analysis of typical inquiry problems of elementary mathematics
based on the cognitive process can provide a reference for instructional
design, classroom interaction and learning environment design.

This chapter proposes a “one-on-one” cognitive diagnosis and
intervention process and method based on cognitive analysis and
simulation and then conducts empirical research on students with
mathematics learning difficulties. The “one-on-one” method can be
used for cognitive diagnosis and intervention for students, especially
for students with learning disabilities. This method can assist with
mathematics teaching by analyzing changes in both different stages and
the same stage of students’ problem-solving cognitive process.

3.3 Research Method

Mathematical problem solving is a highly complex activity involving
numerous interactive behaviors. This book uses the following research
methods.

3.3.1 Verbal Report

Speaking aloud can help many individuals solve problems. It is possible
that the auditory memory of what they say helps reduce the burden on
working memory. Many problems can be solved in this way, which
provides a new method for psychologists to explore to determine how
people solve problems.

Verbal reporting is an important method in problem-solving
research. It refers to “thinking out loud” thoughts while solving a
problem. The researchers recorded the verbal thoughts and analyzed
them to reveal the basis of cognitive behavior. Verbal thinking merely



expresses the information that already exists in working memory, and it
does not affect the process or the outcome of problem solving.

The basic procedure for using the verbal report method is as
follows: (1) Before the verbal report is used with the participants, the
participants must be trained so that they can solve the problem more
smoothly. (2) During the process of verbal reporting, recording
equipment is used to record all of the participants’ dictations. If there is
a pause, the participant should be asked what they are thinking. Unless
there is a clear purpose, questions should not be asked because they
would interfere with the “think out loud” process. A retrospective
verbal reporting approach can be used to ask participants to report
specific things. (3) After the verbal report, the researcher classifies and
compiles the literary materials verbatim according to the verbal reports
and sequences captured by the recording devices. (4) A problem
behavior diagram is drawn based on the data analysis, using
visualization to present how the student solves the problem.

This book uses the simultaneous verbal report method, which can
be divided into four basic steps:

(1)

Problem design.

Designing a typical problem based on the purpose of the study is a
prerequisite for conducting an oral report experiment. In the study, a
typical problem was designed to capture knowledge about concepts
such as “mode,” “adding fractions with unlike denominators,” and
“surface area of cylinder,” which are used for the verbal report
experiment.

(2)

Verbal report record.

The pilot’s guidelines are highly important. The following is a
common example of simultaneous verbal reporting: “Please answer this
question. During this process, please speak out loud your thoughts and
thinking steps but be mindful not to explain the steps.”

(3)
Verbal report translation and coding (Liu, 2014).



Eriksson and Simon (1993) noted in “Protocol Analysis: Verbal
Reports as Data” that the design of the verbal report coding scheme
should consider two factors. On the one hand, it must reflect the
theoretical idea of the research and meet the theoretical requirements;
on the other hand, it must be suitable for the characteristics of the
experimental task. Moreover, it should explain the behavior of the
subjects during the completion of the experimental task. The
corresponding behavioral codes should then be formulated for each
statement in the verbal report.

(4) . |
Data statistics and analysis.

By analyzing these verbal protocols, we can infer the process of
problem solving. Robertson noted that since verbal reports present the
natural situation of solving problems, they can serve as a basis for
computer models of problem solving (Robertson, 2004).

During the study, the materials of the verbal report were analyzed
according to certain principles, and the information processing was
inferred. Simon and Kaplan (1989) noted that the intuitive information
usually provided by verbal records concerns the knowledge and
information needed to solve the problem rather than the actual
processing. Therefore, it is necessary to infer the processing from the
information recorded in the verbal protocols instead of trying to
directly encode the processing.

3.3.2 Computer Simulation

The computer simulation of problem solving involves writing a
computer program based on certain psychological theories to simulate
the internal cognitive process of problem solving. This approach
enables the computer to solve the problem as human beings would and
achieve similar results (Wang & Wang, 1992).

Newell and Simon developed the first computer program to
simulate human problem solving, Logic Theorist (LT), and successfully
simulated the cognitive process of the human proof of the symbolic
theorem. LT proved all 52 theorems in Whitehead’s “Theory of
Mathematics,” which simulates the problem-solving process of human
heuristic search. Computer simulation introduced a unique research



method to cognitive psychology; since then, computer simulation has
become a common method for problem-solving research.

In this book, we used the constructed cognitive model to analyze the
cognitive process of solving elementary school mathematics problems.
We used the Lisp language to write the cognitive program and
implement the simulation in relation to ACT-R. The simulation results
were compared with the experimental data of verbal reports to validate
the simulation.

3.3.3 Case Study

A case study is a method of research in which detailed consideration is
given to the psychological or behavioral development of an individual
or a group investigated continuously over a period of time.

During the implementation of the “one-on-one” cognitive diagnosis
intervention, we selected the students as representative subjects. We
used the verbal report to record the students’ knowledge test, preclass
exploration, postclass exploration, and first and second cognitive
diagnosis interventions. We translated and encoded the verbal report
data of different stages for each student and compared and analyzed
the changes in students’ cognitive processes in different stages.

3.3.4 Interview

An interview is a research method in which the researcher collects the
subject’s psychological characteristics and behavioral data by
conducting verbal conversations with the research subject (Qi, 2004).

For the “one-on-one” cognitive diagnosis intervention research, we
designed an interview outline in advance and then interviewed
mathematics teachers in the fifth and sixth grades from the target
schools to understand the current situation of students’ mathematics
learning and the common problems that arise in this context. We
focused the interviews on the classroom performance and academic
grades of students with learning and problem-solving difficulties. The
math teacher reported that students with learning and problem-solving
difficulties generally have poor grades. Based on this report, we
interviewed some Chinese teachers to provide strong evidence for a
diagnostic intervention. The entire interview process was recorded and
analyzed in a timely manner.



3.3.5 Observation

Observation is a method in which the researcher observes and
describes experimental objects and collects research data in a targeted
and planned manner through a sensory organ or through the use of
certain scientific instruments. The broad definition of observation
includes natural observation and experimental observation methods.
The narrow definition of observation refers mainly to the natural
observation method, which involves examining the observation object
under natural conditions. The observation applied in this book is
narrow observation. According to different standards, observations can
be divided into different categories: direct and indirect; participatory
and nonparticipatory; structured and unstructured; and narrative,
sampling and evaluation.

We used structural observation in this study. The main test involved
designing the content and items for observation in advance and
developing the observation form, then strictly following the design and
using the form to record observational data. During student activities,
the process of students’ problem solving was observed with respect to
the following questions: Does the student come up with an answer
quickly? Does the student take notes? Is the student concentrating
during the problem-solving process?

The students’ performance during the problem-solving process was
recorded via a predesigned “cognitive diagnosis” form. In the follow-up
study, the recorded data were coded to obtain quantitative data for
further analysis. Structured observation can effectively compensate for
the shortcomings of the verbal report method in terms of students’
problem-solving behaviors and make the research conclusions more
convincing.

3.3.6 Questionnaire

A questionnaire is a research instrument consisting of a series of
questions for the purpose of collecting the psychological characteristics
and behavioral data of the respondents. The questionnaire method is
based on a predesigned survey as the tool, so it has a clear purpose. It
can be used to effectively study the various psychological
characteristics and behaviors of participants. In this research, to fully
understand the status quo of elementary school mathematics problem



solving, we developed the “Questionnaire on Elementary School
Mathematics Problem Solving for the Current Situation” and the
“Outline of Interview on Elementary School Teachers Mathematical
Problem Solving for the Current Situation.” The reliability and validity
of the questionnaire were tested with SPSS 22.0 to ensure its
scientificity and objectivity.

3.4 Research Assumptions
This study is based on the following assumptions:

1
() Teaching involves arranging a series of external events and
promoting the development of students’ internal cognitive
processes. The arrangement of teaching activities should be based
on the analysis of students’ cognitive processes.
2
) Well-structured mathematical problem solving is the main form of
elementary school mathematics learning. The analysis and
research of the cognitive process of problem solving can help
researchers scientifically understand students’ cognitive
processes and correctly assess students’ cognitive rules.
3
B) Due to individual differences, each student employs a different
way of solving problems. This research focused on the common
parts of the problem-solving process.
4
*) When the cognitive process of a student while completing a
particular task cannot be directly observed and measured, the
cognitive process can be indirectly determined by the student’s
performance upon the completion of the task. A correct answer
indicates that the student followed a specific and correct
sequence of thinking to determine the answer. This assumption
provides a basis for future predictions.
® N
Diagnosis and intervention in the problem-solving cognitive
process can help students answer questions correctly and achieve
the expected learning outcomes.



3.5 Theoretical Framework

In this book we discuss and analyze problem solving and cognitive
simulation using mathematical problems as an example. The theoretical
basis includes Piaget’s theory of cognitive development, the integration
of information processing theory and constructivism.

3.5.1 Piaget’s Theory of Cognitive Development

Jean Piaget was a Swiss psychologist and the pioneer of the
constructivist theory of knowing. Piaget’s theory of cognitive
development and epistemological view are together called “genetic
epistemology.” Piaget asserted that the core of the development of
children’s cognition is the change in the schema. He stated: “Schema
refers to the structure or organization of actions. These actions are
transferred or summarized in the same or similar environment due to
repeated repetition (Piaget, 1980).” He believed that children’s
cognition from birth to adulthood can be divided into four stages, which
are qualitatively different: the sensorimotor stage (from birth to age
two), the preoperational stage (from age two to age five), the concrete
operational stage (from age five to age eleven), and the formal
operational stage (from age eleven to sixteen and above). Each stage
has a unique schema, which is associated with different cognitive
abilities from those of the previous stage.

One of the characteristics of the concrete operational stage is that
its form is not formalized from the content. Piaget called this
phenomenon horizontal décalage. Another characteristic of the
concrete operational stage is that the resulting system is still
incomplete. Zhu and Lin (1986) suggested that the characteristics of
children’s thinking in this stage gradually transitioned from the
concrete image of thinking to abstract logical thinking as the main form,
but this kind of abstract logical thinking is still largely associated with
the perceptual experience, with a large composition of specific images.
They also asserted that this transition is unbalanced in the study of
different subjects and materials.

The research subjects of this book are fifth- and sixth-grade
elementary school students. Most of them are in the concrete
operational stage. The characteristics of children’s thinking at this stage



can be summarized as follows: (1) Children’s thinking is constantly
changing in different fields or different materials in relation to the same
subject. (2) The construction processes are generally the same, and all
follow a common law. (3) Children’s thinking is not formalized in this
stage and is inseparable from the support of specific items.

3.5.2 The Integration of Information Processing Theory
and Constructivism

Information processing theory uses a computer analogy to describe the
functioning of the human brain and considers that the information
processing of the human brain is computable and serially processable.
On the one hand, computer technology and intelligence are constantly
improving, but they still cannot effectively simulate problems in daily
life, such as an “epiphany,” which is an irrational and nonlogical
problem of human cognition. On the other hand, humans do not follow
serial information processing methods to solve problems as computers
do. Zhu and Lin (1986) noted that information processing psychology
cannot explain human psychology and consciousness, which are the
products of human social practice activities, the products of the
complete interaction between a subject and an object, or the product of
dialectical unity of cognition and emotional will. Therefore, information
processing psychology cannot truly explain the social, initiative and
creative facets of human psychology (Zhu & Lin, 1986). Although, in
terms of problem solving, there are certain levels of similarity between
computers and human beings, if human beings are assumed to be
computers, that assumption will reflect a “mechanical theory” point of
view. A human being is a subjective, initiative, wise, and complex self-
organizing system. Currently, computers are capable of handling a large
amount of information with some degree of intelligence, but they are
not yet fully intelligent.

Resnick noted that when the information processing paradigm was
applied to school education, most people accepted the constructivist
view (Resnick, 1989). Constructivism includes cognitive constructivism
and social constructivism, and cognitive constructivism is derived
mainly from the work of Piaget. Kamii and Ewing noted that the three
main reasons for the use of cognitive constructivism in education are as
follows: (1) it proposes a scientific theory that explains the nature of



human knowledge; (2) it proposes a theory that explains children'’s
construction of knowledge theory from birth to adolescence; and (3) it
distinguishes three types of knowledge (Kamii & Ewing, 1996). Kamii
discovered that children are able to find programs for four arithmetic
operations without being taught the common rules (Kamii, 1985; Kamii
& Ewing, 1996). This study verified Piaget’s theory of the nature of
logical mathematics knowledge and effectively demonstrated that the
acquisition of children’s mathematical knowledge is a process of
individual construction. He (1997) noted that the constructivist
teaching model emphasizes the student-centered model, regarding the
student as the cognitive subject and the active constructor of
knowledge. Teachers simply facilitate the meaning construction of
students (He, 1997). Social constructivism is derived mainly from the
work of Vygotsky, who believed that learning is the process through
which individuals construct knowledge and understanding. Social
constructivism places greater emphasis on the role of the learner’s
social, cultural and historical background.

Constructivism is a philosophical concept that does not explain the
details of knowledge acquisition or learning, but information
processing theory can compensate for this deficiency. In this book, we
employ the information processing framework to argue that solving
new problems entails a process of knowledge construction. Moreover,
the purpose of the application of mathematical knowledge is to better
reflect the theoretical integration of the two paradigms of information
processing theory and constructivism. This integration does not simply
combine basic ideas and theories but rather selects those that are
closely related to the research questions as the basic theoretical basis of
our research.

3.6 Research Significance

In this book we analyze problem solving and cognitive simulation and
conducts an empirical study using mathematical problems as an
example. We discuss the application in mathematics classroom teaching
and has important theoretical and practical value.

3.6.1 Theoretical Significance



(1)

(2)

Multidisciplinary knowledge is integrated and a problem-solving
cognitive model is constructed to better explain the cognitive
patterns of elementary school students. The design of course
content should be based on the cognitive rules of students, which
cognitive models can effectively reveal. Therefore, constructing a
cognitive model is fundamental work that provides the basis and
reference for the design of course content.

By examining the process of problem solving, the basis for
teaching interventions is determined. Learning outcomes result
from the learning process, and problem solving is the main form
of school learning. An analysis of the problem-solving cognitive
process helps to understand students’ learning process and then
to design effective teaching methods to achieve the expected
learning outcomes.

3.6.2 Practical Value

(1)

(2)

(3)

(4)

Understanding, researching and mastering the cognitive process
of student problem solving and then incorporating the cognition
rules of students in the teaching process can help improve
teaching quality.

Teachers’ understanding of the cognitive process of student
problem solving can help promote the development of students’
thinking and innovative ability.

Problem-solving cognitive process analysis can help identify
challenges in learning and form cognitive diagnoses for students,
especially for students with learning difficulties. The diagnosis
results can provide more specific, detailed and targeted guidance
and advice for educational practice and individual development.

The study’s findings can help teachers learn how to diagnose
students’ difficulties and problems to improve mathematics
classroom teaching and promote the sustainable development of
students’ mathematical thinking ability.



3.7 Summary

This chapter describes the three key issues to be solved: (1) How can a
cognitive model be constructed for solving mathematical problems in
elementary schools? (2) How can the cognitive model be used to
analyze the problem-solving process, and how can the ACT-R model of
elementary mathematical problem solving be built and then used for
cognitive simulation? (3) What type of effect can problem-solving
cognitive process analysis have on elementary school mathematics
teaching?

The main research contents and methodology are determined and
analyzed and include verbal reports, computer simulation case studies,
interviews, observations, and questionnaires. Five hypotheses for the
research process are subsequently proposed. The theoretical basis
includes Piaget’s theory of children’s cognitive development and the
integration of information processing theory and constructivism.
Finally, the theoretical significance and practical value of the research
are discussed.

This chapter clarifies the logical relationship between the research
contents, formulates practical solutions, and lays the foundation of the
study.
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4.1 Psychological Characteristics of Primary
School Children

The Compulsory Education Mathematics Curriculum Standards (2011
edition) notes that the design of the mathematics curriculum in
compulsory education fully considers the characteristics of students in
a developmental stage, reflecting the students’ cognitive rules and
psychological characteristics (Ministry of Education of the People’s
Republic of China, 20123, 2012b). In addition, the 2022 edition
emphasized that the mathematics curriculum should give attention to
the teaching level, stimulate the learning interest of students with
learning difficulties, encourage them to think positively, cultivate good
learning habits, and adapt to the development needs of students
(Ministry of Education of the People’s Republic of China, 2022).

4.1.1 Characteristics of Primary School Children’s
Thinking Development

The basic characteristic of primary school children’s thinking is that its
main form transitions gradually from concrete image thinking to
abstract logical thinking. To a great extent, this abstract logical thinking
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is still directly related to sensual experience and largely still
corresponds to a specific image. Piaget also suggested that 7-12-year-
old children’s thinking occurs in the specific computing stage.
Throughout primary school, intuitive teaching is an important method
that draws children’s attention.
In primary school, children are transitioning from concrete image
thinking to abstract logical thinking.
This transition does not happen immediately. It is a complex
process (Zhu, 2009)with the following characteristics:
SR o . .
Children’s abstract logical thinking is evolving, but their thought
processes still show great specificity.
2
) Children’s consciousness of abstract logical thinking is beginning
to develop, but they still demonstrate much unconsciousness.
3
) The level of children’s abstract logic thinking is constantly
improving, and the relationship between the specific image
elements and abstract logical components of children’s thinking is
constantly changing.
(4) . o
The development of children’s thinking involves a gradual
transformation from a concrete image to abstract logic. It
undergoes a clear qualitative change, signifying the critical age at
which primary school children’s thinking develops.

4.1.2 The Developmental Characteristics of Elementary
Children’s Internal Language

Piaget was the first to focus on children’s self-centered discourse and
notice its theoretical significance. However, he does not attach
importance to the genesis of egocentric speech or inner speech.
Vygotsky (2010) distinguishes between self-centered speech and
internal speech. He believes that self-centered speech develops before
internal speech does. Both forms of speech have similar functions and
similar structures, and self-centered speech disappears in the school-
age stage. At this time, inner speech begins to develop. Inner speech is



not only an autonomous speech function but also a distinct plane of
speech thinking.

In the late period of preschool, children demonstrate the initial
germ of inner language but have not developed it enough. Elementary
school children are similar to preschool children. In early childhood,
children’s inner speech is based on the development of language in
preschool and gradually develops in the context of school teaching.

Inner speech is not only accompanied by children’s activities but
also closely linked with children’s thinking. Mathematical problem
solving is a type of thinking activity. Vygotsky’s research on inner
speech provides a theoretical and experimental basis for examination
and reflection in the process of problem solving. The learning sciences
have repeatedly demonstrated the importance of reflection to obtain a
deeper understanding of learning. Additionally, the use of brain
imaging in the field of cognitive psychology has confirmed the existence
of internal circuits in the brain.

4.1.3 Primary School Children’s Memory Development
Characteristics

Experimental studies have shown that the memory ability of children
aged 7-8 years has little difference with that of preschool children
(Zhu, 2009). Conscious and abstract logical memorization begin to
develop, while unconscious and concrete image memorization
understanding still dominate. As children enter the primary stage,
conscious and abstract logical memorization and the understanding of
memorization gradually become prominent.

In the primary school stage, the task of the teacher is to equip
children with sufficient concrete practical material. Teaching from
these specific materials continue to develop children’s abstract memory
of words so that perceptual awareness increases and extends to
rational understanding.

Primary school children’s knowledge and experience are not rich.
They are good at memorizing a specific image. The connection of the
first signaling system is most easily established, and the signaling of the
second signaling system, which is close to the first signaling system, is
also relatively easy to establish. However, the connection of the second
signaling system, which is not very close to the first signaling system, is



more difficult to establish. On this basis, most of the basic knowledge
stipulated in the elementary mathematics curriculum standards is
specific knowledge, and some abstract knowledge is closely related to
specific knowledge.

With respect to the short-term memory of primary school children,
Qian et al. (1989) found that, in terms of the breadth of digital memory,
the differences between first and third grades were very significant, but
those between third and fifth grades were not significant. Therefore, 7-
9 years old marks the rapid development of children’s short-term
memory capacity. Chen and Wang (2005) found that in the primary
stage, the development of memory breadth increases with age.

Compared with short-term memory, working memory places more
emphasis on dynamic information storage and processing. Research by
Li Deming and others has shown that the working memories of both
numbers and language develop with age (or grade) and that the growth
rate slows down after the second year of high school (Li et al., 2003).

4.1.4 The Study of Primary School Children’s Mathematical
Cognition in Cognitive Neuroscience

Cognitive neuroscience emerged in the 1870s seeking to clarify the
mechanism of cognitive activity. Cognitive neuroscience studies how
the human brain mobilizes the components of each level. The
components include molecules, cells, brain tissues, and the whole brain,
all of which are involved in performing cognitive activities (Gazzaniga,
1998). Cognitive neuroscience is a new interdisciplinary subject that
combines cognitive science and neuroscience. Research on cognitive
neuroscience often uses methods such as magnetoencephalography
(MEG), positron emission tomography (PET) and functional magnetic
resonance imaging (fMRI). Poldrack (2008) notes that these
technologies can be used to perform functional brain imaging analysis
of brain activity. Poldrack provides reliable evidence about the brain
mechanism of cognitive activity to ensure that the research results are
scientific.

Many researchers in the field of cognitive neuroscience have studied
primary school students’ mathematical cognition. Specifically, they have
studied the basic processing and brain mechanisms of mathematical




cognition. Researchers have attempted to reveal the patterns of brain
activity associated with effective mathematics learning.

In recent years, cognitive neuroscience has been accorded great
importance for the construction of China: the Chinese national medium-
and long-term plan for science and technology development (2006-
2020) identifies “brain science and cognitive science” as one of the
eight leading frontiers of science and technology in the development of
science and technology. Great achievements have been made in this
field in recent years. With respect to the brain activation mode of
addition and multiplication, Zhou et al. (2007) found that the addition
operation may rely more on visual-spatial processing, whereas
multiplication may be related to language processing. Zhou et al. (2009)
compared the electroencephalogram of subjects when they performed
multiplication and addition problems. They found that multiplication
involves more language processing and that addition involves more
activities related to visual imagery processing.

With respect to issues arising with numerical representation in
children, Zhou et al. administered the digital Stroop task and found that
Chinese kindergarten children (5.85 years old) have a digital automatic
processing ability (Zhou et al., 2008). To examine differences in brain
function among 8- to 18-year-old children and adolescents on different
arithmetic cognition tasks and to address problems in early learning
experience and brain plasticity, Zhou et al. (2007) found through an
ERP experiment that Continental children presented more negative
waves in multiplication problems than did children from Hong Kong.
The reason is that children in Hong Kong and Macao perform
multiplication differently from Continental children (Zhou et al., 2007).

Qin et al. (2004) investigated the process of solving equations in 11-
to 14-year-old children who were learning to solve equations by
combining information processing analysis and cognitive neuroscience
technology. In this research, the letter coupon and the working model
are established. The model includes imaging equation transformation,
extracting arithmetical and algebraic knowledge, and arranging the
action response. The fMRI method is used to record the course of
understanding the equation, which includes the corresponding data on
blood oxygen levels (BOLD, blood oxygen level-dependent response) in
the frontal, parietal, and motor areas of the brain.




The results of cognitive neuroscience research have shown that the
human parietal cortex, especially the area surrounding the bilateral
intraparietal sulcus, has a very close relationship with mathematical
cognition. Pinel et al. (2001) found that the region was significantly
activated when the subjects were comparing the sizes of numbers, and
the trend of monotonicity decreased with increasing distance between
the numbers. Eger et al. (2003) found that the area was activated after
subjects saw the numbers even if they did not perform any digital
operations. Zhang et al. (2004 ) studied the digital processing of Chinese
subjects. The study revealed that the functions of this population were
not influenced by cultural differences because the brain region was
used in the same way.

Some studies have shown that the parietal lobe is not the only area
that supports mathematical cognition. The results of an fMRI study by
Dehaene et al. showed that digital consciousness depended mainly on
the bilateral internal trenches. For example, the bilateral top trench will
appear to be activated when a number and size comparison is
performed. Mathematical knowledge is related to the language system
and is stored in the form of words. Moreover, the researchers found that
precise calculations increased the activation of the left frontal lobe and
the angular gyrus region and are related to language functions. The
estimated results revealed activation of the bilateral parietal cortex
(Dehaene et al.,, 1999). Dehaene et al. (2003) found that arithmetic fact
extraction in arithmetic operations activated the left temporal and
parietal joint cortex. Kaufmann et al. (2008) found that children
activate brain areas involving grip and finger movements, which are the
left supramarginal gyrus and postcentral gyrus, respectively, during
comparison tasks involving numbers. These findings suggested that
children rely on counting on fingers to compare the sizes of numbers.

Based on the current research results, Dehaene et al. (2004) noted
that digital processing is supported by a large network including the
prefrontal cortex, parietal lobe, and temporal lobe. The bilateral
parietal region, especially the area surrounding the intraparietal region,
is related mainly to semantic representation. The frontal lobe,
especially the left inferior frontal gyrus, has great overlap with the
related brain regions responsible for verbal working memory. It is
evident that there is a relationship between digital processing and



language functions. The bilateral temporal lobes, especially the bilateral
spindle gyrus, is related mainly to the processing of digital forms.
According to the view of the multimeter sign, the above brain region is
concerned with processing words, sounds, meanings and other
impressions as well as different calculation tasks. For example, the
estimation task is concentrated in the bilateral parietal region. The
storage of mathematical facts in rehearsal is concentrated in the
prefrontal area. Some digital manipulation tasks, for example,
understanding complex numbers (including negative numbers and
fractions), which require the processing of digital forms, are
concentrated in the temporal lobe, especially with close fusiform
contact (Dong et al,, 2005). There are many related studies in the field
of cognitive neuroscience that are not detailed here.

Additionally, Newell and Simon (1972) proposed the use of human
and computer problems to solve a model called the problem-solving
model. Baddeley’s working memory model provides the basis for this
research (Baddeley, 1986).

4.1.5 Explanation: The Theoretical Basis of Building a
Cognitive Model

In conclusion, primary school children’s thinking is based on specific
image thinking. The lower grades of primary school prioritize material
objects in the real learning concept and the basic operation process and
specific image content in long-term declarative memory. The
development of the internal language of children provides a theoretical
basis for inspection and reflection in the process of solving problems.
Cognitive neuroscience uses relevant technology to perform functional
brain imaging analysis of brain activity and obtain reliable evidence
about the brain mechanism of mathematical cognition activity, which
has improved the scientific validity of related research. However,
cognitive neuroscience and information processing analysis examine
the cognitive process of solving problems at different levels. These two
levels can be used to promote each other: the neuroscience data can
provide a reliable basis for the cognitive model, while the cognitive
model can provide a reasonable explanation for the neuroscience data.



4.2 Analysis of the Solving Process of Various
Types of Primary School Mathematics

Problems

The Compulsory Education Mathematics Curriculum Standards (2011
edition) divides the curriculum contents of compulsory education into
four parts: “numbers and algebra,” “statistics and probability,” “graphs
and geometry,” and “synthesis and practice.” In addition, the 2022
edition underscores the importance of “encouraging students to
identify and formulate problems within practical contexts, and to
employ a variety of strategies such as observation, conjecture,
experimentation, computation, logical deduction, validation, statistical
analysis, and spatial visualization to dissect and resolve these issues”
(Ministry of Education of the People’s Republic of China, 2022). Among
the four parts, “synthesis and practice” comprehensively uses
knowledge and methods from the other parts, “numbers and algebra,”
“graphics and geometry,” and “statistics and probability,” to solve
problems.

According to the above classification of mathematical content, the
study focuses on three main parts, namely, “statistics and probability,”
“figures and algebra” and “graphics and geometry,” and selects typical
problems for analysis. The “numbers and algebra” part concerns
problems such as “numbers,” “addition with different denominators”
and “unary linear equations.” The “figure and geometry” part concerns
the problem of “mode.”

4.2.1 “Numbers and Algebra” Questions
(—) [ . »

Counting” problem
“Counting” is one of the basic abilities that children must develop to
learn mathematics. Many researchers have studied the “counting”
problem. In research on the formation and development of primary
school children’s numerical concepts, Lin (1981) divided the general
ability of primary school children into five grades. The first grade
corresponds to the level of intuitionistic generalization and relies on



the material object, teaching aids or holding one’s fingers to master the
concepts of numbers up to ten. In this grade, if children do not have a
concrete image, the mathematical operation will be interrupted or be
difficult. The development of several elementary school children’s
mathematical concepts follows a certain order. Regarding integers, the
order of grasping the concepts of numbers within a hundred is
recognition — sequence and series, composition = sapplication.

1.
Analysis of the “counting” problem-solving process

“Counting” is the first concept taught in the primary school first-
grade mathematics textbook (Course Textbook Institute, 2006). To
solve the question of “counting” correctly, the following knowledge is
required:

(1) . . . .
Recognizing numbers. Recognizing numbers is the premise of
“counting,” and only by mastering it can one distinguish the
beginning and end of the counting process. For first-grade
children, their main mode of thinking is specific image thinking,
so material objects are often used to teach students the methods.

2

) Number sequence. The sequence is the order relationship of
numbers, such that the number after 2 is 3, the number after 3 is
4 and so on. This understanding may be simple for adults, but it is
not easy for adults to teach it to children. Because adults have
automated the process of counting, they need to expand the
results of the automation; then, they can teach children this
concept well.

Now, the problem of “count from 3 to 5” is taken as an example to
analyze the problem-solving cognitive process of “counting.”
(1) . N
Understand the problem. determine that the starting point is 3
and that the end point is 5.
(2)
Develop a plan. Determine the number after 3, and compare the
count results with five at every turn. If the number is not 5, then
continue; if it is 5, then stop.



(3)

Implement the plan. Start counting from 3, activate and extract
“the number after 3 is 4” in long-term declarative memory. Realize
that 4 is not the end point, and keep counting. Activate and extract
“the number after 4 is 5” in long-term declarative memory. Realize
that 5 is the end point, after which the goal is achieved.

4
*) Review. Reviewing the process can determine whether there are
any problems in each link. This step can also reinforce children’s
awareness of numbers and sequences. The relevant links in
children’s long-term declarative memory can thus be connected
more closely, strengthening their memory.
2

The cognitive processes of “counting.”

A team led by Anderson, a professor of artificial intelligence and a
psychologist at Carnegie Mellon University, studied the problem “count
from 2 to 4” and wrote a corresponding ACT-R program (shown in
Table 4.1). The cognitive process analysis of the problem “count” in this
program is basically the same as that in this book.

Table 4.1. Anderson “count from 2 to 4” cognitive process
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The above table shows the general cognitive process of analyzing a
“counting” problem, which is based on first-grade children’s thinking
characteristics, knowledge base, and other factors. In terms of grade
level, the numeral generalization level of elementary school children is
a spiraling process and an “internalized” thinking process. It proceeds
as follows: in the first grade (7-8 years old), it is developed on the basis
of preschool thinking and entails the generalization of specific images;
in the second and third grades (8-10 years old), it transitions from the
generalization of specific images to abstract images; and in the fourth
and fifth grades (10-12 years old), most children are beginning to
demonstrate preliminary essential abstraction generalization (Zhu,
2009).

(=)
“linear equation with one unknown” problem.

A linear equation with one unknown is a typical algebraic problem,
which appears for the first time in the “simple equation” unit of fifth
grade mathematics teaching materials (People’s Education Press).
Fifth-grade children have mastered basic arithmetic operations and
have previous knowledge of solving linear equations with one unknown
problem.

The process of solving the equation Ax + B =C can be described as
follows:

(1) Understand the problem. This question involves solving an
equation. The goal is to determine the numerical value of the
variable x.



(2)

Develop a plan. Put the expression Ax with the variable x on one
side of the equation, move the other constants to the other side,
and then solve for the value of x.

(3)
Implement the plan. The process of solving equations can be
divided into the following steps:

@

Identify the equation: Ax + B is on the left, and C is on the
right.

@

Place the expression Ax with the variable x on one side of the
equation, and move the other constants to the other side of
the equation. The original equation has a variant of Ax = C-B.

Extract D, the value of C-B, from long-term declarative
memory.

Note that a variation of the original equation is Ax =D, and
the numerical value of x is D/A.

Extract E, which is the numerical value of D/A from long-
term declarative memory.

©@ ® & ©

Determine the value of x to be E.

(4)

Review. First, reviewing the process can help to determine
whether there are any problems in each link. In addition, this step
deepens the knowledge of basic arithmetic results in long-term
declarative memory and further consolidates the steps of solving
equations in long-term procedural memory.

The above steps describe the process that children follow the first
time they solve the equation Ax + B = C. After a period of practice, their
problem-solving process and steps are gradually automated and
continuously simplified.

Anderson studied the solution of a two-step equation and compared
the solutions of the Equation 7 x x+ 3 =38 on Day 1 and Day 5. The



results showed that on Day 5, the problem-solving process was simpler
than that on Day 1; on the first day, it needed 6.1 s, and on the fifth day,
it needed only 4.1 s. By comparing the changes in the equation process

between the first day and the fifth day, we can see that the step-by-step
solution to the problem in the learning process is gradually automated

(Anderson, 2005).

4.2.2 “Graphics and Geometry” Questions

Determining the “cylindrical flank area” is a typical area of knowledge
included under “graphics and geometry.” It corresponds to the content
of the “cylinder” unit in sixth grade mathematics teaching material
(People’s Education Press).

Although the abstract logical thinking of sixth-grade children has
reached only a certain level of development, it still has great specificity.
For example, the problem of “the flank area of the cylinder” is easier to
teach through the method of object teaching.

To solve this problem, the prerequisite knowledge that students
need includes the following:

(1)

the concept of a flank;

(2)

rectangular area formula:

(3)

circumference formula.

The “cylindrical flank area” problem-solving process can be
described as follows:
(1) . .
Understand the problem. Determine which part of the area needs
to be calculated. The prerequisite is the ability to understand the
concept of the flank, that is, to activate the related content of
“flank” in long-term declarative memory.
(2)
Develop a plan. Transform the problem of the “flank area of the
cylinder” into the problem of the area of the rectangle.

(3)

Implement the plan.



A cylindrical flank can be cut into a rectangle, which transforms
the problem into one of calculating the area of a rectangle.

According to the known conditions, find the length and width of
the rectangle.

a.
If the radius of the bottom surface of the cylinder is r, then the

length of the rectangle is equal to the surface circumference of
the bottom of the cylinder, that is, 2.

b.
If the height of the cylinder is h, then the width of the

rectangle is the height of the cylinder h.

The area of a rectangle is length x width, that is, the bottom
surface of the cylinder is length x height.

The area of the rectangle is the area of the cylinder flank.

(4)

Review. Reviewing the process can help to determine whether is
there any problems in each link. In addition, the review connects
the rectangular area formula and the circumference formula in
long-term memory more closely and further consolidates
knowledge of the cylinder side expansion operation in long-term
program memory.

The above analysis of the process of solving the problem of “the area
of the cylinder flank” demonstrates that students may not be able to
answer the questions correctly even if they possess the prerequisite
knowledge. The key is how students think independently to find
strategies for transforming the side of a cylinder into a rectangle. If the
students had some similar experiences, such as paper cutting, parcels,
etc., these experiences can help them think about the strategy of
unfolding the cylinder. Moreover, teachers can help students develop
these strategies consciously.

4.2.3 “Statistics and Probability” Questions



The “mode” is a typical topic in the “statistics and probability” section.
It is covered in fifth grade PEP textbooks during the second semester.
Ding Zuyin conducted an experimental study on children’s processing
of concept mastery. The results revealed that the concept mastery of
primary school children presented stage features. Children in the lower
grades of primary school often use “concrete examples” and “visual
features” to master concepts. Students in the upper grades in
elementary schools are gradually able to grasp concepts based on
nonintuitive “important attributes,” “practical functions” and “genus
relations.” Solving for the “mode” can train students to find nonintuitive
“important attributes” from the data, and the “mode” is the number
that occurs most frequently.

The “mode” is an abstract concept. Although fifth-grade children
have some abstract thinking skills, they still need specific materials to
help them understand abstract concepts. Moreover, psychological
research shows that the process by which children master the
conceptual system is also the process by which children apply the
richness of past conceptual material to assimilate (or comprehend)
profound and systematic knowledge (Zhu, 2009).

The process of solving the problem of “mode” in relation to data {a;,

a,, a3, .., ) can be described as follows:

(1)
Understand the problem. Find the “mode” of the given data.

(2)

Develop a plan. Find the most frequently occurring number in the
data {a, a,, a3, ..., a,}.
(3) Implement a plan.

®

Activate the operation of counting in long-term program
memory, count the number of times that a,, a,, as, ..., a,

appear in the data {a4, a,, a3, ..., a,}.

@

Determine that the number of times that a;, a,, a3, .., a,
appear, as M4, M,, M3, ..., Mn’ respectively.

(3) Activate the comparison operation in long-term procedural
memory and compare the sizes of M4, M,, M, ..., M,, to



v - a > o

determine the maximum M

@

M,,.x corresponds to the number a;, and a; is the mode of the
data {aq, a5, a3, ..., a,}-

max*

(4)

Review and check the solution. Reviewing the process can
determine whether there are any problems in each link. It can also
further consolidate the concept of “mode” in long-term
declarative memory and the operations involving in calculating
the “mode,” the count and comparison ability in long-term
procedural memory.

By analyzing the process of solving the “mode” problem, we find
that the key is to determine the problem-solving strategy, that is, “the
number that occurs most frequently in the data.” Then, operations such
as “counting,” “compare,” and “correspond” are all performed according
to previously acquired knowledge.

Children’s acquisition of concepts is a gradual process that shifts
from concrete to abstract. When children begin to grasp a concept,
many concepts are often isolated and have not been added to a certain
conceptual system due to a lack of empirical knowledge and
experience. Only by grasping a concept in the conceptual system can it
be mastered better. For example, the concept of “mode” can be better
mastered and its connection with other concepts, established, only if
children have mastered the concepts of median and average.

4.2.4 Implications: Building an Instance Foundation for
Cognitive Models

According to 2011 and 2022 editions of The Compulsory Education
Mathematics Curriculum Standards, which classify mathematics course
content in the compulsory education stage, the researcher selected
typical problems such as “number and algebra,” “graphics and
geometry” and “statistics and probability.” In accordance with the
thinking features of primary school children, this book analyzes the
problem-solving process for different types of mathematical problems



and lays the foundation for constructing a cognitive model for solving
mathematical problems in primary schools.

4.3 Cognitive Model for Solving Primary

School Mathematical Problems
4.3.1 Cognitive Model

(—)

The process of building a cognitive model

To build a cognitive model for solving mathematical problems in

primary school, we consider the following points:

(1)

(2)

(3)

Inheriting the four stages of Polya’s mathematical problem-
solving process: understanding the subject, developing a plan,
implementing a plan, reviewing the problem-solving process, and
refining each stage.

Considering the basic characteristics of primary school children’s
thinking. These children’s main form of thinking gradually
transitions from concrete image-based thinking to abstract logical
thinking. Even though abstract logical thinking is still, to a large
extent, directly related to sensual experience, the specific image is
an important component. Piaget also suggested that 7-12-year-
old children’s thinking occurs in the specific computing stage.
Throughout primary school, intuitive teaching is an important
method for capturing children’s attention. The step of “finger
counting” in the process of solving the “counting” problem
highlights the role of “object perception” in primary school
children’s problem-solving process.

Considering the characteristics of primary school children’s
memory. Primary school children have a strong ability to
remember specific, distinctive features. It is based on a specific
image of memory. The physical display of the “cylindrical flank
area” in the problem-solving process shows that primary school
children’s memory is based on a “concrete object.” In addition,
children’s working memory develops rapidly in primary school



(4)

(5)

(6)

and increases with increasing grade level. After the second grade,
the pace of development basically slows down (Li et al., 2003).

Considering the development of primary school children’s
internal language. The internal language of primary school
children develops gradually in school. Vygotsky’s research on
internal speech provides theoretical and experimental evidence
for examination and reflection in the problem-solving process.
Currently, the use of brain imaging in the field of cognitive
psychology also confirms the existence of internal circuits in the
brain. Internal language is considered a critical path for thinking
(Torey, 2009). Wilson et al. used functional magnetic resonance
imaging (fMRI) data from cognitive neuroscience to demonstrate
the inner speech loop activation region (Wilson et al., 2004). In
the process of solving this problem, the review is actually
supported by internal language.

Emphasizing the consolidation of memory or knowledge in
problem solving. The content of working memory is consolidated
over a period of time into long memory (Glickman, 1961;
McGaugh, 1966). The content of the active state of the new,
reactivated memory is consolidated into a stable, inactive state
after a period of time (Naderl & Hardt, 2009).

The problem solution starts from the goal and ends with the goal.
Moreover, it emphasizes the role of the problem situation in
problem solving,.

(—)

Cognitive model introduction

Based on the above analysis, a cognitive model for solving

mathematical problems in primary schools is constructed, as shown in
Fig. 4.1.
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Fig. 4.1 Cognitive model of primary school mathematical problem solving

1.
Information process

Problem solving can be seen as a process, and the flow of
information is described below.

(1)

From object perception to short-term memory

Learners see or hear a problem to accept stimulation through the
perception of the object code as nerve information. This object
perception component must become the object of attention for a longer
period of time, after which the object of attention enters short-term
memory.

(2)

From short-term memory to working memory

Short-term memory capacity is limited for adults, with an average of
7 £ 2 items (Miller, 1956). The short-term memory capacity of primary
school children is lower than that of adults. It undergoes rapid
development over time, becoming stable in the second grade of high
school. A new object will be placed directly in working memory.

(3)

From short-term memory to long-term declarative memory

If the perception is not a new object, it activates the related contents
of long-term declarative memory in working memory.

(4)

Long-term declarative memory



Long-term declarative memory is knowledge that the students have
learned earlier. It is stored as meaningful propositions (Anderson &
Bower, 1973), or complex forms of coding involving conceptual
hierarchies (Quillian, 1968). The coded material in long-term memory
is semantic, that is, organized according to meaning. The content stored
in long, declarative memory is permanent and is retained over time
(Adams, 1967). Sometimes, the extraction of information is hampered
by interference between old and new content. Specific image memory
is the primary form of long-term declarative memory for primary
school children.

(5)

Long-term procedural memory

Long-term procedural memory is a series of rules previously
learned by students to produce rules for the form of storage. It includes
simple rules (such as “number” rules) and complex rules (such as
“dollar equation” problem-solving rules).

(6)

Extraction

Extraction includes long-term declarative memory extraction and
long-term procedural memory extraction. The extraction process
requires clues. In the reading process, familiar words activate long-term
declarative memory-related objects. Related objects are extracted to
working memory. Specifically, during the problem-solving process, it
will extract rules from long-term procedural memory. For example, for
the two-digit addition operation, rules such as one-digit addition rules
and carry rules will be extracted.

(7)

Working memory

The content of working memory is the current active object, existing
in the form of verbal information and image information. It contains the
learner’s existing knowledge and experience with new materials.
Working memory may combine a learner’s existing knowledge with
new material to learn. For example, in explaining the concept of “the
plural,” “the number that occurs most often” is already in the student’s



working memory, but the name of the number is not yet known. The
teacher then describes the concept of “the plural” to students. At this
point, “the plural” and “the number that occurs most often” are
combined to produce new rules, and learning takes place.

(8)

Working memory of the target

The information about the problem in working memory is related to
the existing schema used to represent the problem. The goal of problem
representation is to understand the information contained in the
problem and to determine the target.

(9)

From the target to long-term procedural memory

Goals guide the problem-solving process. The target determines the
goals and will activate long-term procedural memory during
production.

(10)
From solution to production rules

There may be more than one generative rule activated in the
problem-solving process, so one of the rules is chosen to be executed
under the guidance of the problem-solving strategy.

(11)
Problem situation

Problem situations help students identify problem goals and choose
problem-solving strategies. Similar problem situations can help
learners recall special rules from previous learning and find a suitable
rule for the present situation. For example, in introducing the concept
of “modalities,” the introduction of familiar situations such as
“birthday” and the special role of “head teacher” helped students recall
the rule of “taking the birthday of the largest number of months.” When
faced with new problem situations, students need to perform a more
complex and extensive search process than when solving similar
problem situations. New problem situations require a transfer of
learning.



(12) From production rules to operations

The execution of production rules and production of activity
patterns can be observed externally, such as writing problem-solving
processes on paper or explaining ways to solve problems.

(13)
Reflection

This situation occurs when the problem is solved; as the problem-
solving process intensifies, it will be constantly revised. Even after the
problem is complete, the process of solving the problem will be
reviewed. These aspects are the external manifestations of the
reflection.

(14)
Knowledge consolidation

The higher the number of activated objects is, the greater the
likelihood of being consolidated or strengthened is. The knowledge
consolidation process reflects Hebb’s law: “Activated and linked at the
same time. Moreover, the more activated, the stronger the link.” The
result of knowledge consolidation enhances the connection of relevant
objects in long-term memory, making learning useful over the long
term.

(15)
Automation

After completing the problem-solving process, students learn the
new “chunks” formed by the rules of prior production. This “chunk” can
solve new problems. For example, when students first learn different
denominators, the following production rules are activated: (1)
different denominators -add pass points, (2) pass points for the least
common multiple, 3) find the least common multiple, two for each
prime -multiply two numbers. After a period of study, the above three
production rules will be combined into a new production rule: with
different denominators, the denominators for the prime number and
the least common multiple are calculated by taking the product of two



numbers. This process is automated. The result is the emergence of
“advanced rules” and other problems that can solve similar types.

(16)
Summary of information flow

Figure 4.2 illustrates the structure of the cognitive problem-solving
model vertically, and the right-hand column shows the machine process
associated with each structure. Learners see or hear the problem to
accept stimulation through the perception of the object code as nerve
information. This object perception component must become the object
of attention for a long time, after which it enters short-term memory. If
it is a new object, it is placed directly into working memory. If the
perceived object is not a new object, then the relevant content in long-
term declarative memory is activated into working memory. The
content of working memory comprises objects that are currently
activated. It exists in the form of speech information and image
information, including the knowledge and experience of learners and
new materials for learning. Working memory may combine a learner’s
existing knowledge with new material to learn. The information about
the problem in working memory is related to the existing schema used
to represent the problem. The goal of problem representation is to
understand the information contained in the problem and determine
the target. Goals guide the process of problem solving, and the
production of long-term procedural memory is activated after the goal
is established. More than one production rule may be activated, and one
of the rules is chosen to be executed according to the solution strategy.
Production rules are implemented to generate patterns of activity that
can be observed externally, for example, writing down the problem-
solving process on paper or explaining a solution to the problem.
Problem solving is such a situation; with the deepening of the problem-
solving process, it continues to be modified and corrected. Even after
the problem is solved, the entire problem-solving process is reviewed.
All of these actions are external manifestations of reflection. When a
new problem is solved, a high-level rule is produced.
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Fig. 4.2 Problem-solving process based on cognitive model

4.3.2 Modular Representation of the Cognitive Model

To intuitively describe the cognitive process of problem solving, CMMPS
can be simplified into the following six modules:
1

() Visual module: This module retains the presentation of the
problem, including the object perception and coding, such as the
presentation question “1/3 +2/5=7"

2

) Production module: The problem representation activates the
rules in memory, including short-term memory, and the
production rule.

® | R
Retrieval module: This module extracts relevant information from
long-term memory, including long-term declarative memory and
long-term program memory. An example is the long-term
declarative memory of the following facts: 5+6=11,1x5=5, and
2x3=6.

(4) |
Goal module (or control module): This module records or tracks
the current purpose or intent of the problem-solving process,
including the problem situation, goals, and problem-solving part
of the strategy. An example is the common denominator
summation problem in the strategy.

(5) Problem state module (or imaginal module): This module
presents the current psychological representation of the problem,
including the overation and calculation parts. For exampole. the



problemoof theloriginal state 1/3+2/5 i:s. converted to 51/ 1,5 +
6/15.
(6)

Manual module: This module outputs the results, including the
answer, for example, 1/3+2/5=11/15.

CMMPS is represented in modular form, as shown in Fig. 4.3.
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Fig. 4.3 Modular representation of CMMPS

The six modules are listed in Fig. 4.3. The problem-solving process
does not involve all the modules in sequence, and the flow of
information between the modules is nonlinear. The contents of the
module are stored in the buffer, and the current contents of the buffer
make up the working memory.

The cognitive models can be expressed in the form of N x 6 cognitive
matrices, as shown in Table 4.2.In the table, the numbers on the left
represent the line numbers; each line represents a cognitive logic step,
not an actual execution step; and the last line indicates the end of
cognition. Each column corresponds to the six modules in Fig. 4.3, and
the contents of each column represent the contents of a module during
problem solving.

Table 4.2 Cognitive matrix

Visual | Production | Retrieval | Goal | Imaginal | Manual

3.
Description of the various stages of problem solving

The process of solving mathematical problems in primary school is
divided into four stages: understanding the problem, developing a plan,



executing the plan and reviewing. The cognitive process of each stage is
analyzed as follows:

(1)

(2)

(3)

(4)

Understanding the problem. After students see, perceive and code
the problem, they activate their long-term declarative memory of
knowledge. Children’s thinking in primary school is based mainly
on specific image thinking. Long-term declarative memory is
based on concrete objects, especially for children in the lower
grades. According to the situation and existing knowledge, the
brain forms a certain schema to understand the problem. The
result of understanding the problem is to determine what the
unknown is in the problem. What are the known data? What are
the conditions? What is the goal?

Developing a plan. The process from understanding the topic to
formulating a plan is complex and arduous. Long-term declarative
memory is activated with reference to the target to find the
relationship between the known and the unknown, recall similar
problems solved before, and finally obtain a solution to the
problem. If there is little knowledge of the problem in long-term
declarative memory;, it is difficult to produce a good idea. Without
knowledge, it is impossible to generate ideas. Good ideas come
from children’s experience and previously acquired knowledge.

Executing the plan. According to the proposed solution, the
objects in working memory activate the production rules in long-
term procedural memory. There may be multiple activation rules,
but only one production rule can be executed at the same time.
The result of the production rule execution is the operation or
calculation, which constitutes the answer to the problem.
Reviewing. This step helps consolidate content in working
memory into long-term declarative memory. Multiple production
rules are automatically generated as production rules and
consolidated into long-term procedural memory. This step
involves reflecting on the process of solving the problem, checking
whether the result is correct, understanding the approach to
solving the problem, and cultivating the ability to solve the

nrn}'\] om
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4.3.3 Cognitive Model Characteristics

CMMPS is based on the thinking characteristics of primary school
children, taking into account the rules of primary mathematics. It has
the following features:

(1)

(2)

(3)

(4)

(5)

Highlights the importance of the problem situation.

Pupils have less abstract knowledge. It is important to
understand the problem situation to solve the problem. Problem
situations can help students understand problems and translate
applied problems into computational problems. The calculation of
the problem is relatively simple for students. Moreover; it is easy
to correct the answer. The problem situation should be related to
the actual life of the student.

The content of long-term declarative memory is limited, and
knowledge-based and concrete-based knowledge is dominant. As
students progress through grade levels their abstract knowledge
increases gradually.

There is very little content regarding strategies and steps for
solving problems in junior middle school in long-term procedural
memory. However, it increases with problem solving.

In terms of the production rule set, the math problems in the
lower grades of primary school involve mainly simple production
rules. In later grades and with greater knowledge, some simple
production rules form “chunks,” producing a new production rule
that is preserved in long-term procedural memory.

Cognitive process refinement for problem solving can be used for
both diagnostics and automation.

4.3.4 A Few Notes on the Cognitive Model

(1)

The cognitive model describes the problem-solving process in
terms of thinking and memory.



Although the model describes the thinking process of problem
solving, it is constructed at the cognitive level. This design allows for a
more detailed explanation of the thinking process from the memory
level. This study provides more specific and operational methodological
guidance for teaching.

(2)

Problem solving is a nonlinear process.

Events such as the following may occur during the problem-solving
process: students may come up with a very good solution and skip all
the preparatory steps to obtain the answer to the question directly
without going through the stages of the cognitive model. However, if a
student ignores a certain phase of problem resolution and does not
generate a good idea, it will be difficult to answer the question
correctly. If students do not understand the problem and begin to solve
it, they will not answer the question correctly. In the process of
implementing the plan, if students check each step, they can avoid
many mistakes. If students do not re-examine or consider the solution
again, some of the best results may be lost. Problem solving may involve
different processes depending on students’ knowledge and the
problems.

(3) . . .
The cognitive model does not consider the student’s “will,”
“willpower” or other emotional factors in the process of solving
problems.

In the process of solving a problem, it is insufficient to understand
only the subject. Students need to have the will to solve the problem. If
students do not have a strong desire to solve problems, they may give
up when they encounter difficulties in the process of solving problems.
Moreover, it will be impossible to solve a difficult problem. Only with
such a desire will it be possible to answer the question correctly.
However, emotional factors in the problem-solving process are very
complex and are not the focus of this study.

4.3.5 Educational Significance of the Cognitive Model



The cognitive model of primary school mathematical problem solving

has a great influence on the design and diagnosis of problems in the

teaching process.

() o
The model shows that the problem solution consists of several
stages. Moreover, each stage contains several internal processing
processes. To produce a certain learning result, the design process
should be based on internal processing. For example, design
issues, the problem context and student life are linked according
to the cognitive characteristics of primary school students.

2

) Diagnose issues that arise during problem solving and provide
interventions to ensure that learning occurs. The result of
problem solving cannot be judged by a simple “right” or “wrong.”
The cognitive model is used to analyze the internal process that
leads to problem solving and to propose questions that stimulate
the memory of the relevant rules to guide students to answer the
questions correctly. For example, in the study of the “plural”
concept, “birthday” situations and “teacher in class” roles are
provided to guide students in determining “the month with the
largest number of birthdays” rule.

3

) Explain the problem-solving behavior and expecting learning
results. The cognitive model can analyze the internal processing
involved in generating problem solutions. This model infers the
activation of long-term declarative and procedural memories
based on internal processes, explains problem-solving behavior,
and anticipates learning outcomes.

4.4 Summary

The 2011 and 2022 editions of The Compulsory Education Mathematics
Curriculum Standards note that the design of a math curriculum in
compulsory education should fully consider the characteristics of
students’ math learning at this stage and meet students’ cognitive and
psychological characteristics. To implement the concept and intention
of curriculum standards in teaching practice, this chapter focuses on
the construction of a cognitive model of mathematical problem solving



in primary schools (Ministry of Education of the People’s Republic of
China, 2012a, 2012b, 2022).

The cognitive model is the basis of problem-solving cognitive
process analysis. This approach considers not only the cognitive rules
and characteristics of primary school students but also the
mathematics curriculum content characteristics of the primary school.
This chapter first analyzes the psychological characteristics of primary
school children, including the characteristics of the development of
thinking, the development of internal language features, memory
development characteristics, and cognitive neuroscience in their
mathematical cognition. This analysis lays the theoretical foundation
for constructing the cognitive model.

On this basis, we analyze the typical problem-solving processes in
number and algebra (such as the number problem and one dollar
equation problem), graphics and geometry (such as the cylindrical side
area problem), and statistics and probability (such as the mode
problem) problems. We further refine Polya’s mathematical problem-
solving model and construct a cognitive model of elementary
mathematical problem solving. We subsequently analyze the
characteristics of the cognitive models, define the scope of application
of cognitive models and discuss the value and significance of cognitive
models for mathematical classroom teaching.

A cognitive model of primary mathematical problem solving
provides a scientific basis and reference for achieving cognitive
problem-solving simulation and discussing the application of cognitive
analysis and simulation in math classroom teaching.
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5.1 Cognitive Simulation Basis

There are many successful cases in which computer simulation
methods are used to study the internal process of problem solving.
These cases provide a fundamental basis for the use of these methods
to study the cognitive process of students’ mathematical problem
solving.

Newell and Simon wrote the first computer program to simulate the
human problem-logic theorist (LT). It successfully mimicked the human
cognitive process of proving the symbolic logic theorem (Newell &
Simon, 1956). LT proved all 52 theorems in Whitehead’s Mathematical
Theory, which simulates the problem-solving process of human
heuristic search.

Newell and Simon developed the General Problem Solver (GPS)
program (Newell et al., 1959). The program is based on the “means-
purpose analysis” method of preparation. The program successfully
simulated many different types of problems, such as theorem proofs,
the tower of Hanoi and missionaries, and the savages’ problem of
crossing the river. The GPS system contains long-term memory as a
knowledge base that stores various problems related to solving
knowledge and different operators. It also features short-term memory
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in a serial manner for a variety of information operations. A production
system characterizes the internal knowledge of GPS. The program uses
the search of the problem space and the “means-purpose analysis”
method to reduce the current state and the target state differences And
eventually reach the target state.

Gelernter et al. (1960) developed a computer program that
simulated the human geometry theorem—Geometry Machine. Hiller
and Isaacson (1959) developed a computer program that simulated the
creation of musical compositions. Newell et al. (1958) developed a
simulated human chess program. Newell et al. (1957) developed
computer programs that modify many aspects of themselves based on
experience and thus achieve “learning.”

Simon (1986) conducted computer simulations of thinking and
problem-solving behaviors, such as insight and understanding. He
believes that computer simulation is a powerful tool to predict and
explain a large number of thinking phenomena.

Anderson et al. (2008) used ACT-R to simulate the solving process
of the algebraic equation “7x + 3 =38

Wu Wen jun, a Chinese scholar, put forward a mathematical
algorithm for proving the geometry theorem, which is called the “Wu
method” (Wu, 1984). Academician Zhang et al. (1955) improved on this
method, creating a new algorithm to automatically solve the problem of
nearly any geometric proof. However, both scholars studied automatic
problem solving from the perspective of mathematics and did not
consider students’ cognitive process of problem solving.

The cognitive simulation of mathematical problem solving is based
on a certain cognitive model to write computer programs to simulate
the students’ cognitive process of solving mathematical problems. This
design enables the computer to achieve similar results as the students
do. The internal process of student problem solving cannot be obtained
directly. Computer simulation can visualize the internal process and has
become a common method in this field.

5.2 Cognitive Simulation Tools
5.2.1 ACT-R Tools



Adaptive control of rational thinking (ACT-R) has been a well-known
cognitive simulation tool for many years in the Cognitive Science
Laboratory under the leadership of Professor Anderson, a famous
cognitive psychologist at Carnegie Mellon University. It embeds ACT-R
theory, and the programming language is Common Lisp. The current
version is ACT-R 7, version 7.27.9. Its internal structure and parameter
setting are based on a large amount of psychological experimental data.
Many ACT-R data have been verified by NMR experiments. Like a
programming language, ACT-R is a framework. For different tasks,
researchers can combine the cognitive view of ACT-R to strengthen
their assumptions concerning specific tasks and establish models with
ACT-R. Assumptions can be verified by comparing the results of the
model with the results of people completing the same task. ACT-R has
been widely used to simulate different aspects of human cognitive
behavior, such as the Hanoi tower problem, language understanding,
pattern recognition, memory, and simple geometric proofs (Wei et al.,
2011).

5.2.2 ACT-R Application Field

ACT-R has facilitated the creation of models in areas such as learning
and memory, problem solving and decision-making, language and
communication, perception and attention, cognitive development, and
individual differences. In addition to its application in the field of
cognitive psychology, ACT-R has been successfully applied in other
fields, as shown in Fig. 5.1.
(1) _ _
Human-computer interaction: to produce user models that can
assess different computer interfaces;
2
) Cognitive tutoring systems: to “guess” the difficulties that
students may have and provide focused assistance;

(3)
Neuropsychology: to interpret FMRI data.



Fig. 5.1 Application field of ACT-R

ACT-R has been successfully applied in mathematical problem-
solving simulations. By studying the ACT-R model of algebraic
equations, Anderson preliminarily mapped the structural components
of ACT-R theory to a corresponding brain area (Anderson, 2005). ACT-R
emphasizes the measurement of behavior levels, such as keystroke time
and eye movement mode. Anderson et al. used brain imaging
technology to verify the relationship between the ACT-R model and
brain areas in the process of solving equation tasks.

5.2.3 ACT-R Cognitive Neurology Basis

ACT-R studies have a certain cognitive neurology basis. Qin et al. (2003)
and Anderson et al. (2004) found that although parietal and prefrontal
activities are highly correlated, the activities of these two regions are
still distinct. They also confirmed that the prefrontal lobe is more
strongly associated with knowledge extraction and that the parietal
lobe is more strongly correlated with characterization (problem status)
changes. Sohn et al. also found that the prefrontal, rather than the
parietal, cortex is associated with personal knowledge extraction (Sohn
etal., 2005).

Regarding procedural memory in ACT-R, Ashby and Waldron (2000)
studied the neuropsychological basis of sample learning. Hikosaka et al.
(1999) studied the neural network basis of learning sequence
programs, and the results revealed that the basal ganglia are associated
with procedural memory. In addition, D’Esposito et al. (1995)
demonstrated that the anterior cingulate cortex (ACC) is consistent
with the central executive system in the Baddeley working memory
model (Baddeley, 1986).

5.3 Cognitive Simulation



Anderson studied the process of solving algebraic equations. Cognitive
processes occur through interactions with five independent modules
(Anderson, 2005). These five modules are as follows:

. . | o
Visual module: This module retains the problem characterization,
suchas 1/3+2/5.

(2) _

Problem state module or problem state module (sometimes called
the imaginal module): This module presents the current
psychological representation of a problem, such as converting the
original state of the question, e.g., 1/3 + 3/5, to another state, such
as5/15+6/15.

(3) _

Control module, also known as the goal module: This module
records or tracks the current purpose or intent of the problem-
solving process, such as through the denominator summing
problem in the passing strategy.

4

*) Declarative module: This module extracts key information from
declarative memory, suchas 5+6=11,1x5=5,and 2x3=6.

(5)

Manual module: This module outputs the result.

Owing to the bottleneck of the sequence module, only a portion of
the information in each module can be entered into the buffer
connected to the module, such as a perceived object, a representation of
the problem state, and the state of control. Each buffer has only one so-
called “knowledge block” in ACT-R. The knowledge block contains
question status information and control status information. Only one
production rule can be activated at a time in ACT-R.

Elementary mathematics can be divided into two types of
knowledge: procedural knowledge (referred to as PK) and declarative
knowledge (referred to as DK). According to the classification of
knowledge, “addition with different denominators” is an example of
typical procedural knowledge, and “mode” is an example of typical
declarative knowledge. In this study, two points of knowledge were
selected: typical problems were designed, the cognitive process of
problem solving was analyzed, and a simulation was performed.



5.3.1 Cognitive Simulation of the Procedural Knowledge
Problem Solving

) A typical topic

The content of our analysis is the knowledge point of “different
denominators” in the fourth unit of the fifth grade of elementary school,
“meaning and nature of the scores.” The textbooks used are compulsory
education curriculum standard experimental textbooks published by
the People’s Education Press (2nd edition, Oct. 2006). The teaching goal
for the knowledge “addition with different denominators” is to learn
how to perform addition with two different denominators. This
problem is a typical problem involving primary school mathematics
procedural knowledge.

Before learning “addition with different denominators,” students
already know the features of natural numbers n 2, 3, and 5 to be able to
determine the common multiple and the least common multiple. With a
natural number of 1 to 100, students can find all multiples of natural
numbers within 10 and the common multiple and the least common
multiple of two natural numbers within 10.

According to the “addition with different denominators” knowledge
points and the characteristics of the students, we designed the
following questions:

Please color the rectangular paper (as shown in Fig. 5.2). One-
third of the paper should be colored yellow, and 2/5 of the paper
should be colored black. The same color cannot be used for
another area (the yellow area cannot be colored black, and the
black area cannot be colored yellow). What percentage of the
paper is yellow and black?

Fig. 5.2 Rectangular paper

(—)

Cognitive process analysis



The problem of “addition with different denominators” is analyzed
by CMMPS. The cognitive process of problem solving can be described
as follows:

(1) N |
Students visualize the problem and then activate the relevant
objects in long-term declarative memory. They achieve the
intended understanding and identify the goal as the addition of
different denominators, thatis, “1/3 + 2/5 =?", thus completing
the conversion from an application problem to a calculation
problem.
(2) _ _
To solve the problem “1/3 +2/5 =7", activate the production
“addition with different denominators, find the least common
multiple.” The target is determined to be the least common
multiple of 3 and 5.
(3) | | |
Require the least common multiple of 3 and 5 to activate the least
common multiple of productions “3 and 5?7 - 3 x 5” to extract the
fact “3 x5=15" in long-term declarative memory;
4
*) After the least common multiple is obtained, convert the different
denominators into the same denominator, that is, the pass points,
and divide “1/3” and “2/5” into “5/15” and “6/15,” respectively.
5
®) After the pass, transform the problem of addition with different
denominators into addition with the same denominator to
activate the production of the rule “Add the numerators after
calculating the same denominator”;
6
(©) Extract the long-term declarative memory “5+6=11," and
determine the resultis “11/15.” The cognitive process is complete.

To vividly represent the problem of “adding different denominators”
to solve the cognitive process, the analyzed results are expressed in
modular form in Table 5.1.

Table 5.1 Analysis of the “addition with different denominators” cognitive problem-solving
process



Visual | Production Retrieval Goal Imaginal | Manual
1 |Visual
coding
2 Relevant semantic
knowledge in long-
term declarative
memory
3 1/3+2/5="? 1/3 +
2/5=7
4 |[Coding
1/3+
2/5=7?
5 Addition - with
different
denominat-ors
Find the least
common multiple
6 Find the least
common
multiple
7 |Coding
3and
5
8 The least common
multiple of 3 and 5
-is3 x5
9 3x5=15
10 The least
common
multiple
is15
11 Reduce
fractions to a
common
denominator
12 1/3-5/15
2/5-6/15
13 3x5=15
1x5=5
5x3=15

2x3=6




Visual | Production Retrieval Goal Imaginal | Manual
14 5/15
6/15
15 5/15+
6/15=7?
16 Addition with
the same
denominator
17|5/15
+
6/15
=?
18 Add with the same
denominator
Given-a common
denominator, sum
the numerators
19 5+6=11
20 5/15+
6\15 =
11/15
21 Sum the
fractions
(5/15+
6/15) =
11/15
22 End

In Table 5.1, in addition to the abovementioned five modules of the
ACT-R (retrieval corresponding declarative module), an additional
production module is added. This strategy is used in problem-solving
process. In this module, the content is the production rule activated in
the problem-solving process. Each column represents the content of a
module in the problem-solving process. The leftmost column of
numbers in Table 5.1 indicates the row number, and each line
represents the cognitive logical step, which is not the same as the actual
solution step. The last line indicates that the cognitive process is
complete; that is, the problem-solving process is complete. Each
column shows the content of each module at different times.




(=) Cognitive simulation

The chunk used to encode the propositional information is the same
as the knowledge block in ACT-R. The problem is understood in the
form of a chunk, which contains multiple slots. The title “addition with
different denominators” can be expressed as follows:

I[s a mathematical problem,

The object paper has two color areas.

Known 1: yellow area value is 1/3 of the paper

Known 2: black area value is 2/5 of the paper

Goal: a sum, addend 1 yellow area and addend 2 black area

The first line indicates that the problem is a mathematical problem.
The second line indicates that the object is paper, and there are two
color areas. The third line shows the known condition 1: one-third of
the paper is yellow. The fourth line shows the known condition 2: two-
fifths of the paper are black. The last line indicates that the goal is to
seek two sums of the numbers: addend 1 is the yellow area, and addend
2 is the black area.

The Lisp program was written (see Appendix 1) based on the
analysis of the cognitive solving process of the above problem of
“addition with different denominators.” It was simulated in ACT-R, and
the minimum time interval was 0.05 s (default). The problem-solving
cognitive process simulation of this problem is shown in Fig. 5.3.

e

Command,

Fig. 5.3 “Addition with different denominators” cognitive problem-solving process simulation



Figure 5.3 shows that setting goals in the problem-solving process is
a crucial step. It begins with a definite goal. The intermediate process is
the constant conversion of the problem state and finally ends with the
goal. “Procedural” refers to procedural knowledge, that is, production.
The extraction of procedural knowledge involves activating the
production of only one rule at a time. “Declarative” refers to declarative
knowledge, expressed in the form of a knowledge chunk. The extraction
of declarative knowledge is the operation of the knowledge chunk.

The cognitive trace can be visualized via ACT-R. Figure 5.4 shows
the cognitive trace used to solve the problem of “addition with different
denominators.” In Fig. 5.4, the leftmost column is the module in ACT-R.
For example, there is a retrieval module, an imaginal module, a visual
module, a production module, and a goal module, among others. On the
right, the contents of each module are displayed according to the time
sequence (the basic event unit is the default value of 0.55 s). The red
area shows the contents of the extraction module, that is, the
declarative knowledge extracted when solving the problem. The yellow
area shows the contents of the production module, which is the
production activated in the problem-solving process. These
visualizations are consistent with the analysis of the cognitive problem-
solving process of “1/3 +2/5 =7" presented in Table 5.1.

Fig. 5.4 Cognitive trace to solve the problem of “addition with different denominators”

(=)

Activated brain areas

The components of ACT-R map to brain regions that can use functional
magnetic resonance imaging (fMRI) to record the brain’s blood oxygen
level-dependent (BOLD) data for the “alias addition” problem.

Figure 5.5 shows the BOLD data changes in the “production” buffer
after the “addition with different denominators” of the ACT-R model.



The left column shows all buffers in the problem model. One of the
buffers is selected, and the blood oxygen level-dependent data in that
buffer are displayed on the right. The horizontal axis represents the
time, and the default time interval is 1.5 s. The vertical axis represents
the variation range, and the minimum value is “0.0,” which means no
activation; the higher the value is, the higher the activation is, and the
maximum is “1.0.” The figure clearly shows that the activation of the
content in the “production” buffer over time was most prominent
between 5 and 6 s and then slowly decreased until 13.5 s, when it
reactivated.

Fig. 5.5 Activation of the “production” buffer during the “addition with different denominators”
problem-solving process

The brain activation areas for the “addition with different
denominators” problem-solving process is shown in Fig. 5.6. The left
column is marked with a different color buffer. The right image shows
the brain activation area at a given time in the process. The color of the
box corresponds to the color of the buffer on the left. The brightness of
the area indicates the degree of activation. The brighter the area is, the
more it is activated.

Fig. 5.6 Brain activation areas for the “addition with different denominators” problem-solving
process



As shown in Fig. 5.6, the extraction of the contents of the image
buffer is closely related to the activation of the parietal cortex. This
finding is consistent with the findings of the studies by Pinel et al.
(2001), Eger et al. (2003) and Zhang et al. (2004) In those studies, the
parietal cortex of the subjects was significantly activated when they
saw the numbers or performed digital processing. The default time for
an image in ACT-R is 200 ms.

The retrieval buffer is responsible for extracting declarative
memory. [t is associated with the activation of the prefrontal cortex.
This finding is consistent with the findings of Qin et al. (2003),
Anderson et al. (2004), and Sohn et al. (2003, 2005). The prefrontal,
rather than the parietal, cortex correlates with the extraction of
personal knowledge. The extraction time in ACT-R is a free variable.

The procedural buffer is responsible for the extraction of procedural
knowledge and is closely linked to the activation of the basal ganglia.
This finding is consistent with that of Hikosaka et al. (1999).

Figure 5.7 shows the solution to the problem of “addition with
different denominators” in the brain model in the form of a three-
dimensional map of the brain activation areas. In Fig. 5.7, “0. 0-1.0"
represents the brightness value. A value of “0” means that it has not
been activated and that the area is black; the more active it is, the closer
the value is to “1,” and the brighter the area is. The left side of the graph
shows the buffer in a different color, and the number to the right of the
buffer is the activation level. The right side of the graph is the brain
activation area, shown in the same color as the left module.

Fig. 5.7 Three-dimensional display of the brain activation areas for the “addition with different
denominators” problem-solving process

As shown in Fig. 5.7, the target, extraction and production buffers
are all activated to different extents in the process of solving the



“addition with different denominators” problem, in which the target
buffer is activated at a maximum of 0.981, which is close to the
maximum value. The corresponding relationship between the buffer
zone and the brain area is the same as the result shown in Fig. 5.6 and
is supported by existing research, so it is not repeated here.

5.3.2 Cognitive Problem-Solving Knowledge Simulation
) A typical problem

The content of our analysis is the “mode” knowledge point in
“statistics,” the sixth unit of the fifth grade in elementary school. The
materials used for the People’s Education Press compulsory education
curriculum standard experimental textbooks (2nd edition, October
2006). The teaching goal of the “mode” knowledge point is to enable
students to understand and master the concept of “mode,” which is a
typical problem that requires declarative knowledge.

According to the “mode” concept and the characteristics of the
students, we designed the following problem:

“The school agreed to set aside five (six) classes next year for a
birthday celebration, but only the birthdays of students born in a
certain month can be celebrated. Imagine you are the class teacher:

(1)

How would you choose the month?

(2)
Which month do you think should be chosen?”

(=)
Cognitive Process Analysis

The “mode” content is declarative knowledge. In the process of
seeking the answer, we need statistical knowledge, numerical
procedures and other knowledge. This knowledge can be extracted
from students’ long-term procedural memory. To visualize the cognitive
process of solving for the “mode,” the analytical process is expressed in
the form of a cognitive matrix, as shown in Table 5.2.

In Table 5.2, DM represents declarative memory, that is, what
students have learned; P1, P2 and P3 indicate the name of the



production rule. In addition to the five modules (retrieval

corresponding declarative memory module), a production module was

also added in ACT-R. The content of the module production rules is

activated during problem solving. Each column represents the content

of a module in the problem-solving process. The leftmost column of

numbers in Table 5.2 shows the line numbers, with each line

representing the cognitive logic step, which is not the same as the

actual solution step. The last line indicates that the cognitive process is

complete; that is, the problem-solving process is complete.

(=)

Cognitive simulation

Table 5.2 “Mode” cognitive problem-solving process analysis

Visual [Production Retrieval |Goal Imaginal | Manual

1 |[Text

encoding

2 Relevant

semantic
knowledge
inDM

3 Choose
which
month
should be
chosen

4 Choose a month when

students can celebrate their
birthdays, class teacher
role Select -the birthday to
celebrate that month (in
line with common sense,
P1)

5 Select the
month for
which to
celebrate
birthdays
(target
conversion)




Visual |[Production Retrieval |Goal Imaginal | Manual
6 The
month
with the
highest
number
of
students
with
birthdays
7 The month
with the
highest
number of
students with
birthdays,
and then
choose that
month
8 Statistics on
the number
of students
with a
birthday in
each month
9 Statistics,
Count (P2)
10 Compare
the
number
of
birthdays
each
month
11 The
comparison
of the sizes
of the
numbers

(P3)




Visual |[Production Retrieval |Goal Imaginal | Manual
12 Choose the
month in
which with
the largest
number of
students
have
birthdays
13 The month in
which the
largest
number of
students have
birthdays
14 End

ACT-R provides an abstract cognitive structure that is performed
cognitively from a functional point of view. Based on the above analysis
of the cognitive process of solving the “mode” problem, the Lisp
program (in Appendix 2) was compiled. It was simulated in ACT-R with
a minimum time interval of 0.05 s (default). The simulation of the
“mode” cognitive problem-solving process is shown in Fig. 5.8.

Fig. 5.8 “Mode” cognitive problem-solving process simulation

The simulation in Fig. 5.8 shows that setting goals in the problem-
solving process is a key step. It begins with a definite goal. The
continuous conversion of the problem state is carried out in the middle
phase, and finally, the process ends with the goal. Procedural
represents procedural knowledge, that is, production rules. The
extraction of procedural knowledge aims to activate production, and
only one production rule can be executed at a time. Declarative
represents declarative knowledge and is expressed as a chunk. The
extraction of declarative knowledge occurs in the knowledge block.



The problem-solving cognitive trace can be visualized in ACT-R, and
the cognitive trace of “mode” problem solving is shown in Fig. 5.9. In
Fig. 5.9, the leftmost column is a buffer in ACT-R, such as a retrieval
buffer, an imaginal buffer, a visual buffer, a production buffer, and a goal
buffer. The right column is based on the time series (the basic event
unit is the default value of 0.05 s) and offers a visual display of the
contents of the buffer. The red area shows the contents of the extraction
buffer, that is, the problem-solving process used to extract declarative
knowledge. The yellow area shows the contents of the production
buffer, which corresponds to the production of activation during
problem resolution. These findings are consistent with the analysis in
Table 5.2 on the cognitive process of solving the “mode” problem.

Fig. 5.9 “Mode” problem-solving cognitive traces

QU]

Activated brain areas

The components of ACT-R map to brain regions, and this mapping can
be used to record blood oxygen-dependent (BOLD) data for the “mode”
problem using functional magnetic resonance imaging (fMRI) level-
dependent responses.

Figure 5.10 shows the “extract buffer” after the “mode” model in
ACT-R is run with BOLD data changes. The left column shows all the
buffers in the “mode” problem model. If one of the buffers is selected,
the blood in that buffer is displayed in the right area, and the oxygen
levels depend on the data. The horizontal axis represents the time, and
the default interval is 1.5 s; the vertical axis represents the range of
variation, with a minimum of “0. 0” and a maximum of “1.0.” Different
buffers clearly correspond to different buffer zone activations.
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Fig. 5.10 BOLD “BOLD BUFFER” variations in the “mode” problem-solving process
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Figure 5.11 shows the activation areas of the brain in the “mode”
problem-solving process. The left column does not use the same color
marked with a different buffer; the right column represents the brain
activation area. The color of the area box is the same as that of the
corresponding buffer on the left. The brightness of the area indicates
the degree of activation. If the brightness of the area increases, the
activation of the brain also increases.

Fig. 5.11 Activation of brain areas in the “mode of” problem-solving process

Figure 5.11 clearly shows that the extraction of knowledge (mainly
numbers) from the imaginal cortex is closely related to the activation of
the parietal cortex. This finding is consistent with the findings of the
studies by Pinel et al. (2001), Eger et al. (2003), and Zhang et al. (2004).
The parietal cortex of the subjects in those studies were significantly
activated when the subjects saw the numbers or performed digital
processing. The default time for an image in ACT-R is 200 ms.

The retrieval buffer is responsible for extracting declarative
memory and is associated with the activation of the prefrontal cortex.
This finding is consistent with the findings of Qin et al. (2003),
Anderson et al. (2004), and Sohn et al. (2003, 2005). The prefrontal,
rather than the parietal, cortex correlates with the extraction of
personal knowledge.




The procedural module is responsible for the extraction of
procedural knowledge and is closely linked to the activation of the basal
ganglia. This conclusion is consistent with that of Hikosaka et al.
(1999).

Figure 5.12 shows the brain activation zones during the “mode”
problem-solving process as a three-dimensional map. The figure “0.0-
1.0” indicates the brightness value. A value of “0” means that an area
has not been activated, and that area is black; the more active an area is,
the closer the value is to “1,” and the brighter the area is. The left side of
the graph shows the buffer in a different color, and the number to the
right of the buffer is the activation level. The right side of the graph is
the brain activation area, shown in a color that is consistent with the
color of the left module.

Fig. 5.12 Three-dimensional visualization of the brain activation areas during the “mode”
problem-solving process

As shown in Fig. 5.12, in the “mode” problem-solving process, the
contents of the target, extraction, and production buffers are activated.
The three-dimensional visualization shows the brain activation regions
corresponding to different buffers in this process. The results are the
same as those in Fig. 5.11 and are supported by the existing research,
which is not described here.

5.4 Empirical Study on the Cognitive
Simulation of Procedural Knowledge Problem

Solving
5.4.1 Purpose



The purpose of this experiment is to compare the consistency among
procedural knowledge problem solving, cognitive process simulation
and students’ actual problem-solving process to verify the validity of
the cognitive simulation.

5.4.2 Method
(—)
The participants

A total of six students from class five, grade five at a primary school
in Shijingshan District, Beijing, were selected as participants, with three
boys and three girls. Two students each had excellent, middle and poor
comprehensive mathematics results, with an average age of
133 months and an age range of 128-138 months.

—

Material

The experimental materials were a few of the questions that were
designed according to the purpose of this book.
(1) | . |
In grade five, class two, the skipping test was carried out. The 1-
min rope skipping results for the first group of seven students are
as follows:

172 145 135 142 139 140 138

What number do you think would indicate the average level of
jumping rope for this group of students?

(2) Please color the rectangular paper (as shown in Fig. 5.13). Color
1/3 of the paper yellow and 2/5 of the paper black, and do not use
the same color for another region (the yellow area cannot be
colored black, and the black area cannot be colored yellow). How
much of the whole piece of paper is yellow and black?

Fig. 5.13 Rectangular paper with squares



The first question aimed to train students to think aloud when
solving a problem, and the second question tested students’ knowledge
of “addition with different denominators.”

(=)

Program

(1)
Design the experimental scheme

According to the task and purpose of the research, the subjects,
materials and instructions were determined, and the oral report
records were analyzed. Then, the records were compared with the
cognitive simulation results.

(2)

Experimental equipment

A Sony’s recording pen, Sony’s digital video camera and tripod were
used to record the oral reports during the experiment.

(3)

Oral reporting and recording

The oral reporting method was applied to collect information. In
accordance with the think aloud research program developed by
Erickson and Simon, the subjects were trained to think aloud in the
process of solving the problem. The instructions were as follows:
“Please read the questions aloud, think about the process of solving the
problem, and speak what you think. In other words, speak while
completing the questions; speak your thinking process aloud, so you
know how you perform it.” Before students began answering the
question, the main tester (the researcher himself) briefly explained the
instructions. Then, taking question (1) as an example, the main tester
demonstrated and explained how to think aloud in the process of
solving the questions. After the subjects understood the instruction to
think aloud, they began to answer the question. A camera was used to
record the students’ problem-solving process.

(4) _ _
Data translation and coding



The data collected included the two parts of the oral report and
problem-solving operations. The oral report was first translated into
text by the experts, and then the students’ problem-solving
assignments were encoded and analyzed to diagnose their answers.
Two experts were responsible for coding, and agreement was reached
after a discussion of a small number of coding inconsistencies.

Simon et al. note that the intuitive information provided in oral
reports concerns the knowledge and information needed to solve a
problem, not the actual process used (Simon and Newell 1989).
Therefore, it is necessary to deduce the process from the oral reports
rather than trying to encode the process directly.

5.4.3 Results Analysis

Newell and Simon implemented computer simulations of human
thinking and inferred the validity of the simulations by comparing them
with spoken language reports (Newell & Simon, 1961). Based on the
research foundation, this experiment compares the simulation process
with the students’ oral report records to determine the validity of the
simulation.

(—)

Oral report analysis

Table 5.3 provides a detailed description of the process of solving
the problem of addition with different denominators.

Table 5.3 Oral report and cognitive process analysis of “addition with different denominators”

The Oral report Cognitive process analysis
subjects

[Read the question] Input text information by reading the title, and form
the propositional text frame and the problem

Please color the rectangular i )
pattern after visual coding

paper. Color 1/3 of the paper
yellow and 2/5 of the paper
black. The same color cannot
be used for another area (the
yellow area cannot be colored
black, and the black area
cannot be colored yellow).
How much of the whole piece
of paper is yellow and black?




The Oral report Cognitive process analysis
subjects
(Student |[Analysis] Activation of long-term declarative memory related
WangZyY) | the denominators of the to the cqncept of "mut}lal primej" ; activation of
fractions (two fractions 1/3, production ru!e P1: prime multiples of the least
2/5) are 3 and 5, both of which |common multlgle — Multiply two numbers
are coprime, with a least together; 3 x 5 =15;
common multiple of 3 x 5=15. | Activate production rule P2: Determine the LCM —
Then, 1 x5=05, 2 x 3 =6, thatis, | the numerator and denominator of 1/3 are
5/15,6/15,5/15+6/15 = multiplied by the same number 5, and the
11/15 numerator and denominator of 2/5 are multiplied
by 3
Activation of production rule P3: Add with the
common denominator = The denominator does not
change, and the numerators are summed
(Student |[Read the question] Input text information by reading the title, and form
ChenHY) the propositional text frame and the problem

Please color the rectangular
paper. Color 1/3 of the paper
yellow and 2/5 of the paper
black. The same color cannot
be used for another area (the
yellow area cannot be colored
black, the black area cannot be
colored yellow). How much of
the whole piece of paper is
yellow and black?

pattern after visual coding




The
subjects

Oral report

Cognitive process analysis

[Analysis]

Reduction of fractions to a
common denominator. The
least common multiple of 3 and
5is15,1/3x5=5/15,2/5x%3
=6/15

The numerators add up to 11

Activation of production rule P1: Addition of
denominator fractions — reduction of fractions to a
common denominator; activate “reduction of
fractions to a common denominator.” Production
rule P2: reduction of fractions to a common
denominator — calculate the least common
multiple of the denominator; Production rule P3: 3
and 5 are prime numbers, find the least common
multiple — the least common multiple is 3 x 5 =15;

Production rule P4: the least common multiple of
1/3 and 2/5 is 15, translate into the same
denominator — the denominator is converted to the
least common multiple of 15. The denominator and
the numerator are multiplied by the same number;
the numerator and denominator of 1/3 are
multiplied by the same number, 5, resulting in 5/15;
the numerator and denominator of 2/5 are
multiplied by 3, resulting in 6/15

Activation of production rule P4: Add fractions
with the common denominator — The denominator
does not change, and the numerators are summed

[Read the question]

Please color the rectangular
paper. Color 1/3 of the paper
yellow and 2/5 of the paper
black. The same color cannot
be used for another area (the
yellow area cannot be colored
black, the black area cannot be
colored yellow). How much of
the whole piece of paper is
yellow and black?

Input text information by reading the title, and form
the propositional text frame and the problem
pattern after visual coding




The Oral report Cognitive process analysis
subjects

(Student |[Analysis] (1) Determine the target
XingYR) | petermination of the

percentage of yellow and black
to the whole piece of paper,
reduction of fractions to a
common denominator;
conversion of fractions to the
same denominator of 15

Convert 1/3 into 5/15, and turn
2/5into 6/15; 6/15+5/15 =
11/15. This method feels a little
messy. This paper can be
divided into 15 parts

[Ask: why is it divided into 15
parts?]

Because the denominator is 15,
and the yellow and black
together accounted for the
whole piece of paper. The
denominator is 15 after the
reduction of fractions to a
common denominator. The
whole paper is divided into 15
parts, 11 parts are selected
from it, and yellow and black
together accounted for 11/15
of the sheet of paper

Activation of production rule P1: Addition of
denominator fractions — reduction of fractions to a
common denominator; activate “reduction of
fractions to a common denominator.” Production
rule P2: reduction of fractions to a common
denominator — calculate the least common
multiple of the denominators; Production rule P3: 3
and 5 are prime numbers, find the least common
multiple — the least common multiple is 3 x 5=15;

Production rule P4: the least common multiple of
1/3 and 2/5 is 15, translate the denominators into
the same denominator — the denominator is
converted to the least common multiple of 15. The
denominators and the numerators are multiplied by
the same number; the numerator and denominator
of 1/3 multiplied by the same number, 5, resulting
in 5/15; the numerator and denominator of 2/5 are
multiplied by 3, resulting in 6/15. Activation of
production rule P5: Add fractions with the common
denominator — The denominator does not change,
and the numerators are summed

(2) Reflect the problem-solving process

[Read the question]

Please color the rectangular
paper. Color 1/3 of the paper
yellow, 2/5 of the paper black,
and the same color cannot be
used for another area (the
yellow area cannot be colored
black, the black area cannot be
colored yellow). How much of
the whole piece of paper is
yellow and black?

Input text information by reading the title, and form
the propositional text frame and the problem
pattern after visual coding




The Oral report Cognitive process analysis
subjects

(Student |[Analysis] The student understands that 2/5 of the whole
LiL) piece of paper is wrong, and he understands that

The denominator should be 15, ‘
2/5 represents the remainder

(divide the rectangle into three
in the figure, and paint one of | Activation of the wrong production rule P1:
them). The approach is to Addition with different denominators —
divide the remaining paper into | Denominator and numerator multiplied by
5 parts and take 2 of them (2/5 |respective numbers

of the whole paper). Yellow
and black together accounted
for a fraction of the entire piece
of paper, thatis, 1/3 + 2/5; the
denominator is 15, and the
numerator is 2, resulting in
2/15

[Ask: 2 how did you figure it
out?] 2 is the numerator: 1 x 2,
following the least common
multiple (referring to 15), the
operation is 3 x 5, and the
denominator is calculated
accordingly

Further confirmed the activation of production rule
P1: addition with different denominators —
denominator and numerator are multiplied

The content of (-) is omitted in the oral reports of students. To
indicate completion, it is added, along with a (-) mark.

An analysis of the “addition with different denominators” oral
reports reveals that WangZyY, ChenHY and XingYR and other students
solved the problem of addition with different denominators, including
the reduction of fractions to a common denominator, the least common
multiple, and other steps. However, in the least common multiple step,
WangZY mentioned that “3 and 5 are coprime, and the least common
multiple is 3 x5=15," and ChenHY and XingYR directly stated that “the
least common multiple is 3 x 5=15." LiL. incorrectly solved this problem
because of the use of the incorrect production rule.

(=)
Cognitive simulation and oral report comparison.

Figure 5.14 shows a comparison of “addition with different

denominators” problem-solving cognitive simulation and oral reports.
The left panel is the result of the simulation, and the right panel is the




content of the oral report. The comparison shows agreement between
the two.
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Fig. 5.14 Cognitive simulation and oral report comparison for “Addition with different
denominators”

5.4.4 Discussion
(—)
On the same question, different students used different
methods for solving the same problem.

With respect to the problem of “addition with different
denominators,” WangZy, ChenHY and XingYR all solved the problem
correctly, but the details of their approaches were different. In seeking
the least common multiple, WangZY mentioned the concept that “3 and
5 were coprime, and the least common multiple was 3 x 5=15,” which
activated the concept of “coprime” in long-term declarative memory.
Specifically, to find the least common multiple, according to the
qualities of the mutual prime, the least common multiple is multiplied
by two; this reasoning was activated in long-term program memory. In
contrast, ChenHY and XingYR directly stated that “the least common
multiple is 3 x 5 =15, which activated long-term programmatic
memory.

(=)
In the process of solving the problem, students showed
different degrees of “automation.”

In the “addition with different denominators” problem, to solve “the
least common multiple of 3 and 5,” WangZY’s approach was “3 and 5
are coprime, and the LCM is 3 x5=15." ChenHY’s step was the direct
determination of the “least common multiple of 3 and 5 is 15,” which
provided the result. This example shows that in the process of solving
problems, the internal operation can be compressed, and after a long
period of training, a few simple internal operations may be compressed



into one “chunk.” For example, the two production rules P1: A - B and
P2:B — C are often activated at the same time, which generates a new
production rule P3:A — C. Additionally, the phenomenon of “speeding
up” occurred when this student studied algebraic equations. He
believed that after training, the solution of the equation could be
simplified into a series of visual coding and output operations
(Anderson, 2005). The study by Schoenfeld shows that becoming an
expert in a field generally requires approximately 50,000 knowledge
blocks in long-term memory, which are concrete objects of thinking in
the field; moreover, in many cases, the use of strategy is, in fact, the use
of such a well-established knowledge block (Schoenfeld, 1985). The
above conclusions are in line with the analysis of this study, which also
explains, to some extent, the difference between experts and novices in
solving complex problems. Experts have more knowledge of
“automation,” whereas few beginners have this knowledge.
(=) o

Incorrect production is an important reason for the problem-

solving error

In the problem of “addition with different denominators,” when LiL
solves “1/3 +2/5,” the incorrect production Equation P1 is activated:
denominator addition, denominator multiplication and numerator
multiplication, resulting in a problem-solving error. There are two
reasons for this error. First, LiL. does not understand the meaning of the
fraction. There is a problem with semantic models of fractions in long-
term declarative memory. Second, he does not understand the tactics of
reducing fractions to a common denominator through the divisions
mentioned earlier. In addition, the reason for the reduction of fractions
to a common denominator and how to do so are not known. Anderson
studied the cognitive process of students learning solutions to algebraic
equations and suggested that learning occurs at the symbolic level and
creates (or generates) new production rules (Anderson, 2005).
Therefore, helping students form the correct production rules is an
important part of procedural knowledge learning.

qu'p)

Cognitive analysis of problem-solving process helps diagnose
and intervene in problems



LiL makes a typical error in calculating the “addition of
denominators,” as indicated by the oral report: (1) LiL successfully
extracted the declarative knowledge 3 x 5=15 and 1 x 2 =2, which
indicated that there was no problem in multiplying two numbers. (2)
Although the numerator and denominator were multiplied, the report
showed that he could correctly identify the numerator and the
denominator of the fraction. (3) The error in solving the problem stems
from the use of incorrect production rules: “the addition of
denominators — the numerator and the denominator are multiplied
separately, and the numerators are summed. To help LiL correct his
mistakes, we must consider how to help him form the correct
production rule of “addition with different denominators — find the
least common multiple” and the basic operation needed to achieve this
production rule.

(1)

Determine whether cognitive simulation is consistent with the
student’s problem-solving process

Whether a computer can completely simulate the human problem-
solving process has always been disputed. The task of thinking aloud,
which was proposed by Newell and Simon (1961), effectively answered
this question and promoted the development of cognitive psychology. It
provided a new perspective on the study of human thinking and later
developed into an important method in psychology research—the oral
report method.

Because of existing knowledge, learning styles, cognitive
characteristics, the family environment, and other factors, students will
not be consistent in their answers to the same questions, but there will
always be similarities. As Newell and Simon demonstrated in computer
simulations through a verbal reporting approach, not all individuals
adopt the same problem-solving process, but many similarities and
commonalities exist. In this book, we consider mainly the
commonalities.

5.5 Declarative Knowledge Problem-Solving
Cognitive Simulation Empirical Research



5.5.1 Purpose

The purpose of the experiment is to verify the validity of the cognitive
simulations by comparing the cognitive simulation of the declarative
knowledge problem-solving process with the students’ practical
problem-solving process.

5.5.2 Method
(—) _
The subjects
A total of six students from grade five, class three at a primary
school in Shijingshan District, Beijing, were selected as subjects,
comprising three males and three females. Two students each had
excellent, middle and poor students’ comprehensive mathematics
results, with an average age of 133 months and an age range of 131-
135 months.
(—) _
Material
The experimental materials are a few of the questions that were
designed according to the purpose of this book.
(1) . .
In grade 5, class two, the rope skipping test was carried out. The

results for the first group of seven students for 1 min of rope
skipping are as follows:

172 145 135 142 139 140 138

What number do you think is suitable for indicating the average
level of rope skipping for this group of students?

(2) The school has agreed to hold a birthday celebration next year for
grade five, class three. However, only the birthdays of students
born in a certain month can be celebrated. If you are the class
teacher:

@

How would you choose the month?



(2) Which month do you think should be chosen?

The first question was used to train students in think aloud
exercises, and the second question was designed to test students’
knowledge of “the mode” topic.

(=)

Program

(1)

Design experiment scheme

According to the task and purpose of the research, the subjects,
materials, and instructions were determined, the oral report records
were analyzed, and the results were compared with the cognitive
simulation results.

(2)

Experimental equipment

A Sony’s recording pen, Sony’s digital video camera and tripod were
used to record the oral reports during the experiment.

(3)

Oral reporting and recording

The oral reporting method was used to collect information. In
accordance with the think aloud research program developed by
Erickson and Simon (1981), the subjects were trained to think aloud
while solving a problem. The instructions were as follows: “Please read
the questions aloud, think about the process of solving the problem,
and say what you think. In other words, in the process of problem-
solving, speak your thinking process aloud so that you know how you
perform it.” Before the students began answering the question, the
main tester (the researcher himself) first briefly explained the
instructions. Then, taking question (1) as an example, the main tester
demonstrated and explained how to think aloud in the process of
completing the questions. After the subjects understood how to think
aloud, they began to answer the question, and the students’ problem-
solving process was recorded.



(4)
Data translation and coding

The data collected included two parts: oral reports and problem-
solving operations. The oral report was first translated by professionals
into text, and then the students’ problem-solving assignments were
encoded and analyzed to diagnose issues in the problem-solving
process. Two experts were responsible for coding work, and agreement
was reached after a discussion of a small number of coding
inconsistencies.

Simon et al. note that the intuitive information usually provided in
oral reports is about the knowledge and information needed to solve a
problem, not the actual process used (Simon & Kaplan, 1989).
Therefore, it is necessary to deduce the process from the oral reports
rather than trying to encode the process directly.

5.5.3 Results Analysis
Newell and Simon (1961) implemented computer simulations of
human thinking and inferred the validity of the simulations by
comparing them with oral reports. Based on this research foundation,
this experiment compared the simulation process with students’ oral
report records to verify the validity of the simulation.

(—)

Oral report analysis

Table 5.4 provides a detailed description of the process of solving
the “mode” problem.

Table 5.4 Oral report and cognitive process analysis of the “mode”

The Oral report Cognitive process analysis
subjects




The Oral report Cognitive process analysis
subjects

[Read the question] Input text information by

The school agrees to hold a birthday celebration reading the title, and form the

next year for class propositional text frame anq

_ _ the problem pattern after visual

three, grade five. However, it can be celebrated only coding

for students born in a certain month. If you are the

class teacher:

(1) How would you choose the month?

(2) Which month do you think should be chosen?
(Student | [Analysis] Identify the problem: the goal is
QiuDL) to find the month in which the

(Thinking in 49 s) I do not know the birthday of
everyone in our class. We choose the month in
which most students have birthdays. This is the
question, specifically, which month? First, [ think
the month of every student should be listed, and
then which month has the most birthdays should be
found and then chosen. Most students’ birthdays
can be taken care of

most students have a birthday

Statistics on the dates of
students’ birthdays

Choose the month with the
largest number of birthdays

The month in which the most
students have birthdays should
be selected

Understand the problem
situation, taking into account
the role of the head teacher

[Read the question]

The school agrees to hold a birthday celebration
next year for class

three, grade five. However, it can be celebrated only
for students born in a certain month. If you are the
class teacher:

(1) How would you choose the month?
(2) Which month do you think should be chosen?

Inputting text information by
reading the title, and form the
propositional text frame and
the problem pattern after visual
coding




The

Oral report

Cognitive process analysis

subjects
(Student | [Analysis] Identify the problem. The goal
LiC) is the month in which students

The month in which most students have a birthday
should be selected. There should be statistics on the
month in which students have birthdays

Choose the month with the largest number of
birthdays

[Asked: How can the statistics be generated?] Draw
a table of January to December; (then) count the
number of January classmates who stand up, then
repeat the process for students who are born in
February. Finally, make sure the correct month is
selected

have birthdays
Choose a solution strategy

Activate procedural memory
“statistics” production

Activate “comparative”
production in procedural
memory

[Read the question]

The school agrees to hold a birthday celebration
next year for class

three, grade five. However, it can be celebrated only
for students born in a certain month. If you are the
class teacher:

(1) How would you choose the month?
(2) Which month do you think should be chosen?

Input text information by
reading the title, and form the
propositional text frame and
the problem pattern after the
visual coding

(Student
ChenYL)

[Analysis]
[ choose May

[Asked: How did you choose May?] There were
more May birthdays

[Asked: How do you know that the most students
celebrate their birthday in May?]

Ask classmates. Most students have their birthday in
May. Each year the school restaurant gave birth
birthday cake hair, and then you can know the
students in which month birthday

Extract long-term declarative
memories for “the largest
number of birthdays is May.”
(The implicit assumption is that
the goal is to select the month
with the largest number of
birthdates.)

Choose a problem-solving
strategy

Activate the long-term
declarative memory of “school
birthday” scene

The birthday cake will be sent
to the student — The month of
sending a cake is the month
with the largest number of
birthdays




[ think the months of January, March, May, July,
August, October and December are most
appropriate because they all have 31 daysin a
month. More classmates will have birthdays in these
months

January is the winter vacation, and July and August
are the summer vacation, so choose between March
and May. Choose May

There are more activities in October because there
are 7 national days, and the time of one’s birthday is
particularly tense

Choose between March and May. I feel that March is
the best because in the middle of the semester, there
is not too much pressure, so the celebration will not
waste time for learning. I feel the March is best and
most suitable month

The Oral report Cognitive process analysis
subjects
[Read the question] Input text information by
The school agrees to hold a birthday celebration reading the title, and form the
next year for class propositional text frame and
_ _ the problem pattern after visual
three, grade five. However, it can be celebrated only coding
for students born in a certain month. If you are the
class teacher:
(1) How would you choose the month?
(2) Which month do you think should be chosen?
(Student | [Analysis] Activate production rule P1:
PangB)

Which month has more days -
There are more people who
have a birthday, and the
assumptions are: Everyone’s
birthday is evenly distributed
on a daily basis, so the more
days in a month, the more
people that have birthdays

Errors are produced, which
lead to solving the incorrect
problem

The content of (-) is omitted in the oral reports of students. To
indicate completion, it is added, along with a (-) mark.

(=)

Comparison of cognitive simulation and oral report

Figure 5.15 shows a comparison of the cognitive simulation for the
“mode” problem-solving process and the oral reports. The left panel
shows the results of the simulation, and the right panel shows the
content of the oral report. The comparison shows that the two are the

same.




Fig. 5.15 Comparison of the “mode” cognitive simulation and oral report

5.5.4 Discussion
(—)
For the same question, different students provide different
details concerning the problem, but they all have
commonalities.

With respect to the “mode” problem, students QiuDL and LiC solved
the problem correctly. By analyzing the oral reports of the two students,
we found that in counting how many students had a birthday each
month, the two students adopted different methods. QiuDL first listed
the month of each person’s birthday and then determined which month
had the most birthdays. LiC drew a table from January to December and
then counted the number of January classmates who stood up; then, the
process was repeated for students who were born in the remaining
months. Finally, the correct month was selected. QiuDL and LiC went
through the process of identifying the problem (finding the month with
the highest number of birthdays), counting the number of birthdays in
each month, comparing the number of birthdays each month, and
determining the number of months with the highest number of
birthdays, all of which were common to both students’ processes. As
Newell and Simon showed through colloquial reporting to validate
computer simulations, not everyone’s problem-solving process is the
same, but there are many similarities and commonalities (Newell &
Simon, 1961). In this book, we consider mainly the commonalities.

(=)
Determining a goal is a key aspect of successful problem
solving

An analysis of the “mode” oral report revealed that in the problem-
solving processes adopted by QiuDL and LiC, the first step was correctly
determining the target and then adopting a strategy to solve the
problem successfully. Although ChenYL decided that the goal was to



select the months in which the most students who had birthdays, he did
not consider the whole class, which led to a problem-solving error.
(=)
Understanding the problem situation an important step in
successfully solving the problem

“Mode” is a typical type of declarative knowledge, and the process of
obtaining the concept of “mode” depends largely on students’
experiences. The phrase “if you are the class teacher” gives students the
“class teacher” role; students moreover must consider a “birthday”
situation and, to gain a deeper understanding of the “class teacher”
role, will take into account the fairness of accounting for the most
students and then select the month with the most birthdays. Students
QiuDL and LiC have a good understanding of this situation and set the
problem goal accordingly. When ChenYL answered the question, he
activated the situation of “birthday cake for the student at school” and
quickly determined the month when there were the most cakes, that is,
the month with the most birthdays. The teacher confirmed that ChenYL
is a student at school and personally experienced a cake scene.
However, ChenYL only considered the birthday of a student at school
and did not consider the birthday of the whole class. That is, he did not
understand the role of the “teacher in class” thoroughly, resulting in
problem-solving errors.

QL.

In the process of solving the problem, there are different
degrees of “automation.”

ChenYL directly answers the question when solving the “mode”
problem. An analysis of the oral report revealed that although there are
some errors in the process of solving problems and the determination
of goals and other stages, the activation of long-term declarative
memory of students regarding the months with the most birthdays is
May. By directly stating the answer is May, a few simple operations are
combined into a “chunk,” resulting in “automation.” Anderson studied
the phenomenon of “speeding up” in his study of algebraic equations.
He believed that after enough training, the solution equation could be
simplified into a series of visual coding and output operations
(Anderson, 2005). This view is consistent with the analysis of this book.



(1)

Incorrect production is an important reason for the problem-
solving error

In the process of solving the “mode” problem, Pang B activated the
wrong production “which month has more days — there are more
people who have a birthday” when he selected the month with the most
birthdays, leading to problem-solving errors. With respect to the role of
production in learning, Anderson studied the cognitive process of
students learning solutions to algebraic equations and suggested that
learning occurs at the symbolic level, creating (or generating) new
production rules (Anderson, 2005). Therefore, helping students form
the correct production rules is an important part of procedural
knowledge learning.

5.6 Cognitive Simulation Contributions and

Limitations

The computer simulation of problem solving has an important

influence on the development of artificial intelligence. It has promoted

the in-depth study of the psychology of problem solving and increased
people’s understanding of certain aspects of problem solving.

) Computer simulation helps solve the problem of visualizing
internal cognitive processes. Psychological studies of problem
solving give more attention to one of the links, such as problem
characterization, strategy selection, etc. Thus, the entire process
cannot be visualized. In recent years, cognitive neuroscience
research on problem solving has made many achievements and
provided some evidence. However, these results are more
concentrated at the nervous system level but cannot be used to
characterize the internal process explicitly. Computer simulation
involves the entire process of problem solving and visually
displays this internal cognitive process, clearly showing the
procedural and declarative knowledge required for problem
solving.

(=) Computer simulations have promoted the organization of
research into knowledge bases. Computer simulation of problem



solving requires a knowledge base as a support. The more
knowledge in a knowledge base, the easier the information
processing is and the more easily a problem can be solved.
Common knowledge in the knowledge base will form a large
chunk in long-term memory, which provides ideas for the
decomposition and combination of knowledge in mathematics
teaching.

(=) o |
Computer simulation presents the concept of a production
system. Production systems formalize the cognitive activities of
problem solving. The rules of “if (conditions) then (action)”
apply to different content, and different kinds of problems
become the general mechanism of problem solving. The
productive formula emphasizes the importance of correct
identification in problem as well as the correct application of the
premise. Therefore, the problem-solving process becomes the
process of obtaining and applying the production system
correctly. The production system supplies new ideas for solving
mathematical problems.

Although some achievements have been made in computer
simulations of problem solving, some problems still need further study.
(—) . N

Problem-solving computer simulation programs are performed
in a serial fashion, yet individuals’ thinking processes when
solving problems may not be serialized. This issue is also very
controversial in psychology.

) When a problem is solved, individuals provide a quick response
according to the situation at that time, which has a certain
degree of randomness. However, computer simulations cannot
take into account the situation.

(=) Computer simulations of problem solving do not consider
motivations, emotions, attitudes or other factors in the problem-
solving process. These factors have a significant impact on
problem solving and can play a role in selecting, guiding and
controlling cognitive processes.



Although many problems remain in the problem-solving computer
simulation, computer programs operate according to strict logic and
certainty. The cognitive process of problem solving cannot be
accomplished by other means. Computer simulation combines some of
the factors in the process of problem solving to reconstruct this process
and overcomes the formerly analytical approach of experimental
psychology. This advancement opens a path for understanding the
cognitive process of problem solving as a whole (Wang & Wang, 1992).
Therefore, it is a special research method of cognitive psychology and is
highly important for computer simulation.

5.7 Summary

This chapter first describes the basis of problem-solving cognitive
simulation and then introduces the cognitive model used as a tool,
namely, adaptive control of thought-rational (ACT-R), along with the
internal structure, application areas and cognitive neurology. We
subsequently selected procedural knowledge problems (“addition with
different denominators”) and declarative knowledge problems
(“mode”), analyzed the cognitive process of problem solving, and used
Lisp to write cognitive programs. In ACT-R, cognitive simulation was
performed, the results were visualized, and the brain regions activated
during problem solving were analyzed. To verify the validity of the
cognitive simulation, a group of students from two classes in a primary
school were tested via oral English reports. The results showed that the
cognitive simulations were consistent with the oral reports.

The computer simulation of problem solving has an important
influence on the development of artificial intelligence. It promotes the
in-depth study of psychology in problem solving and improves
individuals’ understanding of certain aspects of problem solving.
However, many problems remain in the current computer simulation
problem-solving process. Cognitive simulation reveals that the
cognitive process of problem solving is irreplaceable by other means.
This insight opens the way for understanding the cognitive process of
problem solving as a whole.



The problem-solving cognitive process is analyzed and simulated to
visualize the implicit process of problem solving. This approach not
only helps to deepen the understanding of cognitive processes but also
helps diagnose students with learning disabilities. It provides targeted
counseling to help improve academic performance.
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Countries worldwide attach great importance to exploring the role of
mathematics learning and teaching. In recent years, the U.S.
government has placed particular emphasis on the importance of
involving students in real science inquiry (Loucks-Horsley et al., 2000;
Schweingruber et al., 2012). In Europe, Australia, Israel, and other
countries, classroom teaching places particular emphasis on inquiry.
The National Medium and Long-Term Education Reform and
Development Plan (2010-2020) indicates that school learning provided
students with an understanding of society, in-depth thinking skills, and
hands-on engagement. Inquiry teaching is an instructional method
advocated by the new curriculum reform.

The problem is the basis of mathematical innovation, the starting
point of mathematical inquiry learning. In particular, inquiry learning
emphasizes the importance of questions in learning activities (Yu,
2004). A proper exploration of questions can stimulate students’
curiosity, guide them to think actively, cultivate their ability to think and
apply logic, and improve the pertinence and effectiveness of teaching
activities. The Compulsory Education Mathematics Curriculum Standards
(2022 edition) also emphasizes that teachers should become
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organizers, guides, and collaborators in students’ learning activities and
provide a good environment and conditions for student development. A
typical problem is a necessary condition for inquiry learning. The
design of inquiry questions fully reflects the teacher’s role as the
organizer and guide of student learning activities. When designing the
teaching process, teachers need to have a clear direction of inquiry.
Primary school research has found that frontline teachers expect to
carry out inquiry teaching in the classroom. However, there is a lack of
analysis of inquiry problems, and teachers cannot grasp effective
methods and means to design inquiry problems. Hence, a common
phenomenon occurs in which the form of inquiry is more important
than content in classroom teaching. How to create inquiry questions is
one of the most common concerns of primary and secondary school
mathematics teachers, which is the key to effectively carrying out
inquiry teaching and an effective way to improve students’ creative
thinking ability.

6.1 Research on Problem Design

In mathematics teaching, the training of students’ thinking skills should
be incorporated into teaching activities. Teachers cannot take for
granted that they can think as students and expect students to answer.
Teachers should try to reduce the direct interpretation of teaching
materials, which can lead to responses such as “I do not know what to
do,” so students can experience hands-on application. Teachers should
create conditions for students to think independently to gain an
understanding of knowledge and truly experience the process of
generating knowledge (such as concepts). During this process, teachers
should be patient and provide appropriate prompts at the right time.
The learner’s learning process is the process of problem solving.
Dewey outlines the sequence of events as follows: (1) the presentation
of the problem; (2) learners clarify the problem or distinguish the
essential characteristics of the problem situation; (3) learners form
hypotheses that can be used to solve problems; and (4) learners try to
verify the hypothesis until the learner finds the answer to the question
(Dewey, 1910). An analysis of the sequence of events solved by the
problem shows that only the first step is an external event, and the



remainder are internal events; the first step in the external event is the
question that is presented to the students. Therefore, in the inquiry
learning process, the design of inquiry questions is crucial. The fifth
chapter analyzed and simulated the problem-solving cognitive process,
that is, the internal events, and provides the basis and reference for the
design of inquiry questions. The following sections address the inquiry
teaching mode and strategy. To explore the type and design of a
problem, information technology can be used to support mathematical
inquiry learning.

6.1.1 Exploring Teaching Methods and Strategies

With respect to the inquiry teaching model, Poon proposed a
framework for the inquiry teaching of primary school teachers and
conducted inquiry teaching practices in four primary schools.
Conceptual knowledge and procedural knowledge are very important
in exploratory activities (Poon et al., 2012). Wang Jingying used text
analysis to compare the inquiry teaching modes of four science
teachers in China and the United States. She found that American
teachers regard the question as the core and allow students to study
implicitly and reflect on the problem through questions. Identifying
problems, forming assumptions, making plans, exploring experiments,
analyzing data, verifying assumptions, interpreting results, and
reviewing and reflecting on practical applications are all aspects of
problem-centered circular and open systems. Chinese teachers have
focused mostly on the goal of exploring the dimensions of knowledge
and skills in teaching (Wang, 2010).

Stafylidou and Vosniadou (2004) reported that students often use
invalid or even incorrect strategies when exploring the meaning and
size of scores. If the teacher tells the student the answer, inquiry
learning becomes a simple knowledge transfer. Teachers need to
master the inquiry learning process to provide proper guidance when
students explore problems through inquiry.

Fernandez and Yoshida (2012) reported that in Japanese
elementary school mathematics inquiry teaching, the inquiry question
posed by the teachers is one of the four key elements of classical
inquiry teaching. Polygamy argued that mathematics teaching should
present students with thought-provoking and controversial questions




and that students should try their best to discover as many insights as
they can under the given conditions.

6.1.2 Type and Design of Inquiry Questions

Researchers such as Chin and Kayalvizhi (2002), Gott and Duggan
(2002), and Watson et al. (1999), and have studied the types of
students’ inquiry questions and training methods of inquiry learning.
Owing to the different research situations, the types of problems
examined are quite different. Koufetta-Menicou and Scaife (2000)
provided training to improve students’ inquiry questions, such as group
discussions, brainstorming, and creating interesting situations. Chin
and Kayalvizhi (2002) calls noninquiry questions low-level questions
and inquiry questions high-level questions. Luo (2010) presents three
stages of asking questions: generating question awareness, expressing
the problem, and expressing the problem in scientific language.

To explore the issue of inquiry design, Ding et al. (2009) conducted
student interviews to eliminate the influence of the viewpoints of
physics experts and gain insight on the issue and improve the
effectiveness of problem design. Li (2013) analyzed the theoretical
framework of designing audience response systems in interactive
inquiry teaching. Li (2007) describes the design of the teaching
response system in terms of the design steps.

With respect to the educational implications of inquiry questions,
Lock (1990)found that many of the questions raised by students were
poorly researched and not even educationally valuable. Jong’s study of
Dutch middle school students revealed that students in inquiry learning
classes score high on conceptual knowledge and that students in
traditional teaching classes score high on procedural knowledge (De
Jong etal., 2010).

6.1.3 Information Technology Support for Mathematical
Inquiry Learning

With respect to information technology support for mathematical
inquiry teaching, Baki et al. (2011) reported that, compared with
traditional teaching, the use of dynamic geometry software improved
the spatial recognition skills of first-year normal school students
majoring in math. Falcade et al. (2007) used tracking tools in dynamic



geometry software to help students explore the concept and trajectory
of functions. Eysink et al. (2009)compared the effectiveness of different
learning methods supported by technical environments and reported
that inquiry learning is most effective in deepening conceptual
knowledge. Web-based problem-solving training and assessment
systems in IMMEX also emphasize the importance of scientific inquiry
and describe the inquiry process (Stevens et al., 2004).

6.1.4 Comments

The above literature analysis indicates that the study of mathematical
inquiry has attracted the attention of researchers. Inquiry-based
teaching in the United States tends to be more content oriented,
whereas inquiry-based teaching in China is more oriented toward
teaching methods and teaching strategies. At present, the design of
inquiry questions tends to reflect the personal experience of teachers,
which is subjective and lacks systematic analysis and scientific design.

6.2 Exploring the Basis and Principles of

Problem Design

In June 2001, a basic education curriculum reform in China was
announced. The reform introduced changes in the curriculum to
emphasize receptive learning, rote learning, and mechanical training
status; promote the active participation of students willing to explore
and practice; and cultivate the ability to acquire new knowledge to
collect and process information, analyze and solve problems and
exchange and cooperate. The outline of the national medium- and long-
term educational reform and development plan (2010-2020) noted
that “the school left students with the practice of understanding society,
thinking deeply and practising hands-on.” The problem that is used to
support the student’s cognitive understanding, problem representation
and cognitive level should be made consistent to the extent possible
with the use of graphical and tabular forms, thus establishing specific
procedures and abstract concepts to help students understand the
meaning of the problem.

6.2.1 Design Basis of the Inquiry Problem



The design process of primary school mathematics inquiry problems
should consider not only primary school children’s psychological
characteristics and life experiences but also their previous knowledge
and problem-solving learning process analysis.

The basic characteristic of primary school children’s thinking is that
its main form transitions gradually from concrete image thinking to
abstract logical thinking. To a great extent, this type of abstract logical
thinking is still directly related to sensual experience and still presents
as a specific image (Zhu, 2009). Piaget (1952) suggested that pupils are
in the transitional stage of the development of concrete thinking to
abstract thinking. However, in the information age, in which children
are considered “digital natives” (digital natives), there are individual
differences in the cognitive development of each child. However, the
stage of cognitive development does not change. Throughout primary
school, intuitive teaching is an important condition for drawing
children’s attention. The use of “finger counting” in the process of
solving the “counting” problem highlights the role of “object
perception” in solving problems among primary school children.

An experimental study revealed that the memory ability of 7- and 8-
year-old children is not very different from that of preschool children
(Zhu, 2009). With the preliminary development of the unconscious
mind and logical memory, the unconscious mind and specific images
still occupy a major position. As children enter primary school,
awareness, memorization, and abstract logic gradually become
dominant cognitive functions.

The cognitive process analysis is based on the mathematical
problem-solving cognitive model for primary school. It analyzes and
clarifies the cognitive process, providing a clear description. The results
of the analysis constitute an important basis for the design of the
problem.

6.2.2 Principles of Designing the Inquiry Problem

1.
The expression of the problem should conform to the cognitive
level of primary school students

An analysis of mathematics textbooks from Grades 1 to 6 revealed
that the primary school mathematics curriculum content ranges from



concrete to abstract. With increasing grade levels, the degree of
abstraction of the course content increases, and the content of the math
textbooks in Grades 1 and 2 is composed of specific materials. The
design process of inquiry questions should conform to the principles of
physical and mental development and the cognitive laws of pupils,
reflecting the characteristics of pupils’ mathematics learning in primary
school. The problem formulation should be consistent with the
cognitive level of students and avoid, to the extent possible, an “adult”
and “academic” presentation of graphics and forms to help students
understand the meaning of the problem and establish specific insights
and abstract concepts.

2.
The relationship between the problem situation and the real lives

of students

Considering the characteristics of pupils’ cognitive development, we
must teach knowledge in a way that considers students’ real-life
problems. Students in primary schools, especially those in lower
grades, do not understand abstract concepts and do not grasp the
regularity of operation rules well. Even in the high school years, we
should consider the physical background to which mathematics
concepts and rules are attached to enable students to experience and
understand them rather than acquiring them through rote learning.
Cheung (2008) noted that the inquiry problems that are posed are not
related to students’ lives, so teachers encounter challenges in finding
appropriate research materials. Therefore, the inquiry problem should
be designed through an organic combination of knowledge and
students’ real lives so that it is relatable. Teachers can obtain teaching
material from real life to inspire and guide students to enable them to
gradually realize that the concepts and laws of mathematics are
abstracted from real life. The closer to real life a problem is, the greater
the ability of students to understand and apply knowledge and thus
achieve more comprehensive, holistic and integrated knowledge, and
students’ basic knowledge base will also be more robust (Liu, 2002).
The knowledge that the students construct in the process of solving
practical problems will be flexible. Through solving practical problems,
we can help students to experience the value and significance of



learning to stimulate their learning motivation and the importance of
solving problems in real life (Schliemann, 1985; Schliemann & Nunes,
1990). They reported that solving problems in the context of the real
world by constructing a strategy and problem-solving method was
more meaningful.

3.
Implying knowledge in the process of solving problems

At present, most inquiry questions are often tied directly to the
knowledge that students need to learn, but the mere teaching and
application of knowledge do not involve “problem inquiry” and
“knowledge discovery.” Therefore, the knowledge gained is difficult to
transfer flexibly into complex practical problems. Students solve
inquiry problems to reflect on and abstract professional knowledge and
problem-solving strategies. The design of inquiry problems should
allow students to “unwittingly” acquire knowledge in the process of
solving the inquiry problem.

4,
Let the students experience the process of knowledge production

Students need to personally collect data, analyze data, and then
discover knowledge to solve a problem. A problem is solved not by
“knowing the answer at once” but rather by “thinking hard.” Resnick
(1987) designates hard and nonalgorithmic thinking an important
component of high-level thinking skills. By personally experiencing the
knowledge application, students learn how knowledge is used.
Knowledge acquired in this way belongs to the students themselves and
can be transferred flexibly.

5.
Integrating the model mind into the process of problem design

A mathematical model is a common method for solving practical
problems in mathematics. Pupils gradually master mathematical
models of addition, subtraction, multiplication, division, and equations
in mathematics learning. When solving practical problems in real life,
we can abstract practical problems into mathematical problems and
use mathematical models to solve them. Model thinking provides a



basic way for students to understand the relationship between
mathematics and the external world, and it is a bridge between basic
mathematics knowledge and the application of mathematics. The
process of establishing and solving the model should abstract
mathematical problems from real life or specific situations. By solving
typical problems with model thinking, we can help students initially
develop model thinking and improve their interest and application
awareness in mathematics learning. When designing a problem, a
teacher should fully consider the idea of the model. When students face
similar problems in the future, they can abstract them into
mathematical problems and use mathematical models to solve them
effectively.

6.3 Typical Inquiry Problem Design

Anderson, a modern cognitive psychologist, divides the book
Knowledge of Students’ Learning into “declarative knowledge” and
“procedural knowledge” from the perspective of the psychological
nature of knowledge. This division has philosophical roots, and
Andersen elaborates on his psychological mechanism. The notions of
“declarative knowledge” and “procedural knowledge” are common and
widely accepted categories of knowledge, and this classification of
knowledge is thus also used in this book.

An analysis of the content of the teaching materials revealed that
the division between “declarative knowledge” and “procedural
knowledge” is not absolute. Research by Rittle-Johnson, Siegler, and
Alibali also revealed that the development of declarative knowledge
and procedural knowledge are entangled and that there are complex
mutual promotions (Rittle-Johnson et al.,, 2011). According to the
different priorities in determining which type belongs, knowledge
points can often include both “declarative knowledge” and “procedural
knowledge.” On the basis of the above analysis, two typical knowledge
points, “mode” and “cylindrical flank area,” are selected from the
mathematics textbooks of Grades 5 and 6. The “mode” in Grade 5 is
mainly “declarative knowledge,” whereas the “flank area of a cylinder”
in Grade 6 is mainly “procedural knowledge.”



In the following, the “mode” and “cylindrical flank area” knowledge
points are used as examples to discuss the problem design.

6.3.1 “Mode” Precourse Inquiry Question Design

The “mode” is an important concept taught in fifth grade in primary
school. Students have previously learned the concepts of “average” and
“median.”
(—) _ _

Theoretical basis

Conceptual learning is not merely the sum of a connection formed
by memory or a psychological habit. It is a complex and real thinking
activity. Practical experience shows that the direct teaching of concepts
is not effective. Although students can remember to explain concepts
and imitate conceptual knowledge, their ability to apply concepts to
solve real problems is poor. Through experiments, Ach showed that
concept formation is not a passive mechanical process but a creative
process; a concept is generated and formed during a complex
operation, and the purpose of this complex operation is to solve a
problem. The external conditions that suggest the mechanical
connection of words and objects are insufficient to produce a concept.
According to Ach’s schema, concept formation is a goal-oriented
process. [t is a series of operations that serve the various steps leading
to the ultimate goal. To ensure that the process of concept formation
can proceed, an unsolvable problem must be presented and cannot be
solved unless new concepts are formed (Vygotsky, 2010).

Designing and presenting a problem that leads to the formation of a
concept does not mean that the problem should be viewed as the
reason for the concept formation process. Notably, the goal must be to
understand the intrinsic linkages between external tasks and
developmental motivation and the formation of concepts as a function
of social development and cultural growth. This framing affects not only
the content of young people’s thinking but also their way of thinking.

The concept of the “mode” is based on data analysis. The
Compulsory Education Mathematics Curriculum Standards (2011
edition) emphasizes that in mathematics courses, students should give
attention to learning the concept of data analysis (Ministry of Education



of the People’s Republic of China, 2012). Additionally, the 2022 edition
stresses that the mathematics curriculum must deliver the appropriate
level of instruction, aiming to ignite the interest of students who face
challenges in learning, foster their proactive thinking, nurture
beneficial study habits, and meet the evolving developmental
requirements of the students (Ministry of Education of the People’s
Republic of China, 2022). Understanding many problems in real life
involves performing research, collecting data, making judgments
through analysis and interpreting the information contained in the
data.

The “mode” is a concept taught in Grade 5. It is directly explained to
students. Such teaching is simple and easy, and students can remember
the content. However, this teaching method ignores the motivation and
development of the concept formation process and ignores the
students’ experiences in this process. Therefore, in this study, we did
not tell the students directly. Instead, we presented the well-designed
questions to the students and let them explore the problem-solving
process to completion, that is, the process of forming the concept of the
“mode” through problem solving.

(=)

Design process

1.
Textbook title analysis

To teach the concept of “mode” through the teaching materials, a topic
is presented before the concept of “mode” is introduced. The purpose of
this approach is to enable students to learn the concept of “mode” by
solving questions, as shown in Fig. 6.1 (Course Textbook Institute,
2006).

Fig. 6.1 “Mode” problem in teaching materials



Ten students from Class 2 in Grade 5 were selected to participate in
group dance competitions.

The heights of the 20 candidates (unit: m) are as follows:

1.32 1.33 1.44 145 146 1.46 1.47

1.47 148 148 149 1.50 1.51 1.52

1.52 1.52 152 1.52 1.52 1.52

According to the above data, which height do you think is most
appropriate?

Then, the following information is presented: “In this set of data,
1.52 occurs most frequently. To analyze this set of data, the mode is
used. The mode reflects the concentration of values in a set of data.”

Analysis of the data in the title and the goal yields the following
results:

(1)

There is no suitable height;

(2)

A single height is not sufficient for choosing 10 students;

(3)
The data are given directly, thus eliminating the step of data
collection. The actual problem is that the data will not be
automatically provided.

(4)
The topic of “choosing a dance partner” indicated in the title is not
familiar to pupils. It may be familiar to urban pupils, but for rural
pupils, this problem situation is highly unusual. It is therefore not
conducive to the discovery and mastery of knowledge.

Through the above analysis, we find that the topics presented in the
textbooks are not typical examples of the “mode” problem.

2.
“Mode” problem-solving cognitive process analysis

The “mode” is a typical part of the “statistics and probability”
section and is a concept presented in the second semester of fifth grade
in PEP textbooks. Zuyin Ding conducted an experimental study on the
process of mastering children’s concepts. The results revealed that the
concept mastery of primary school children presented stage features.



Children in lower grades of primary school tend to use “concrete
examples” and “intuitive features” to grasp these concepts. In contrast,
children in higher grades of primary school gradually grasp concepts
according to nonintuitive “important attributes,” “practical functions,”
and “genus relations.” The concept of “mode” trains students to identify
nonintuitive “important attributes” of the data, in this case, the most
frequent occurrence.

The “mode” is an abstract concept. Although Grade 5 children have
some abstract thinking skills, specific materials are still needed to help
children understand these concepts. Psychological research also holds
that the process of children’s mastery of the conceptual system is the
process by which children apply various conceptual materials they
learned to assimilate (or comprehend) profound and systematic
knowledge (Zhu, 2009).

The “mode” cognitive problem-solving process is based on a
cognitive model of mathematical problem solving (CMMPS) (Wei & Cui,
2012). Solving for the “mode” in data {a4, a,, a3, ..., a,} can be described

as follows:

(1)
(2)

Understanding the question. Find the “mode” in the given data.

Developing a program. Find the most frequently occurring
number in the data {a4, a,, as, ..., a,}-

(3)
@

Activating the operation of counting in long-term procedural
memory. Count the number of a;, a,, a3, .., a, in data {a4, a,, as, ...,

ap}

Implementing the program.

Determining that the occurrence times of a;, a,, a3, ..., a, as My, M,
Mg, ..., M, respectively.

@ Activating the comparison operation in long-term program
memory, comparing the sizes of My, M,, M3, ...,, M, to determine

the maximum value M ...



The number corresponding to M

a3, .0 ).

max 1S the mode of the data {a4, a,,

(4)

Review and check. Check for any errors in each step. The concept
of “mode” is added to long-term declarative memory, and the
operation for finding the “mode” is added to long-term procedural
memory, while the understanding of counting numbers and
comparisons are further strengthened.

By analyzing the process of solving the “mode” problem, the key is to
determine the problem-solving strategy, that is, “the most frequent
number in the data.” Performing operations, such as “counting
numbers,” “comparison,” and “corresponding,” consists of drawing on
previously learned knowledge.

Children’s acquisition of concepts is a concrete and gradual abstract
process. When children begin to grasp a concept, many concepts are
isolated and have not been added to a certain conceptual system due to
a lack of knowledge and experience. Only in the conceptual system can
the effect improve. For example, within such a system, the concept of
“plural” can be mastered more effectively, and the connection between
the concepts of median and average can be established only if children
have mastered these concepts.

3.
Model of the “mode” problem concept

The newly promulgated Compulsory Education Mathematics
Curriculum Standards (2022 edition) proposed that the mathematics
curriculum should emphasize the development of students’ model
thinking. The process of establishing and solving the model includes the
abstraction of mathematical problems from real-life or concrete
situations (Ministry of Education of the People’s Republic of China,
2022). Reported that asking students to construct a conceptual model
of problem solving is a crucial step in problem transformation. Through
the analysis of the “mode” solution process, a conceptual model of the
“mode” problem is obtained, as shown in Fig. 6.2. Through the analysis



of the model, the key to solving the “mode” problem is to choose a
strategy for problem solving, that is, how to convert a “birthday”
situation into a mathematical problem. After converting to a math
problem, students can use their existing knowledge and skills to solve
the problem. Therefore, the design of inquiry questions should help
students convert application questions into mathematical problems.

Fig. 6.2 Conceptual model of “Mode”

4.
Inquiry problem of “mode”

In his treatise on “lectures” in How We Think, Dewey states,
“Preparation is to ask questions and inspire students to think of
familiar personal experiences, which is helpful in understanding new
issues. As soon as a student associates these insights with actual
activities, the process of recognizing something new becomes easier.”
This statement is applicable to the above considerations and the
analysis of the model of solving the “mode” problem. To design the
inquiry problem of “mode,” the following problem uses a situation
familiar to students, such as “birthday.”

The school agrees that five (one) classes can have a birthday
celebration next year. However, only the birthdays of students born in a
certain month can be celebrated. Imagine you are the head teacher:

How do you choose the month?

Which month do you think should be chosen?
(1)

The concept of design



This topic is a real application problem, and the “birthday”
situation is closely related to students’ actual lives.

Students analyze problems, build a model of the problem, and
choose problem-solving strategies independently;

Students collect data and obtain the number of people who have a
birthday each month independently;

Students calculate statistics and the number of people with a
birthday each month independently;

@ ® ® ©® ©

When the number of students who have birthdays in the same
month is compared, the month with the most birthdays is the
solution to the problem.

The goal of design

Enable students to not only understand the concept itself but also
experience the meaning of the concept.

Enable students to experience the “mode” concept through the
application of the problem situation. Moreover, by building several
strategies and methods for problem solving, knowledge transfer
can be deepened.

®

Train students on converting the application model into a
mathematical modeling problem.

By solving the “mode” inquiry question, teachers do not convey the
concept of the majority directly; rather, they allow students to calculate
their own statistics for students’ birthday months in the class.
Moreover, the number of birthdays for each month is compared.
Students not only understand the concept itself but also experience the
meaning of the concept; experience the application of the concept of
“mode” by building relevant strategies and methods, thereby deepening
their knowledge transfer; and learn how to convert the application



model into a mathematical modeling problem. The design of the
“mode” inquiry questions embodies the “problem context-model
building-solution verification” mathematical activities process and
reflects the basic requirements of the model. It is conducive to helping
students understand the process of problem solving, grasp knowledge
of the “mode” concept and accumulate experience in math activities.
Solving the inquiry problem is conducive to helping students take the
initiative to find, analyze and solve problems to train their innovative
awareness.

6.3.2 “Cylinder Flank Area” Before the Inquiry Questions
are Designed

) Theoretical basis

Procedural knowledge refers to behavior performed under certain
conditions and usually refers to the ability to operate. The “cylindrical
flank area” is a typical form of procedural knowledge. Procedural
knowledge is obtained through practice. In many theories about
problem solving and skill acquisition, declarative knowledge is often
used as procedural knowledge of preparatory knowledge and existence
(Anderson, 1983; Byrnes, 1992).

When learners encounter new problem situations, the process of
problem solving is the process of obtaining advanced rules. Gagne’s
research on problem solving shows that when a learner succeeds in
solving a problem, a high-level rule is obtained. This rule can be quickly
generalized to similar problems. The direct presentation of the answer
to the learner is ineffective for learning. The reason is that such a
presentation does not require the acquisition of advanced rules, and
the answer can be effectively learned as a simple chain. The most
reliable teaching method is to use examples to stimulate learners to
discover rules by themselves (Gagné, 1999). High-quality pretest
questions are designed, allowing students to explore and experience
the process of knowledge discovery, that is, the process of obtaining
high-level rules.

The “flank area of the cylinder” is a new knowledge point taught in
sixth grade. Before students learn about the area of a rectangle, the



circumference of a circle, the degree of a circle, and related concepts,
they acquire the prerequisite knowledge needed to solve the “cylinder
flank area.” Thus, this study designed typical problems and allowed the
students to determine how to calculate the flank area of the cylinder.
()
Design process

The “cylinder side area” is procedural knowledge taught in the sixth

grade of elementary school. Before students learned “the circumference

of a circle” and “the area of a rectangle,” other calculations are
performed.

1.
Textbook title analysis

Teaching materials for the “cylinder flank area” (as shown in
Figs. 6.3 and 6.4) allows students to learn the cylinder, given the
“bottom” “flank” “height” and other concepts. Moreover, after
expanding the cylindrical side to be a rectangle, the calculation of the
flank area of the cylinder is converted into that of the area of a
rectangle.

Take a cylindrical object, take a look at
which part of the cylinder is compased.

Fig. 6.3 “Cylinder flank area” Problem 1 in the textbook
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Fig. 6.4 “Cylinder flank area” Problem 2

)

This design of teaching materials is logically in line with students
cognitive rules. A careful analysis of the details reveals the following:

(1) The strategy of unfolding the side of a cylinder is presented
directly to the student, and the student does not experience in-
depth thinking on “why.”



(2)
The title should present a situation and allow students to develop
a method for calculating the flank area of the cylinder.

2.
Problem-solving model

The “cylindrical side area” problem-solving model is shown in
Fig. 6.5.

Fig. 6.5 Model for solving the “Cylindrical side area” problem

An analysis of the “cylinder flank area” reveals that the key to
solving the problem of the cylinder side area is converting it to a
rectangular area. Designing problems and creating situations from the
perspective of students’ lives so that students can generate an idea for
converting a cylinder flank area into a rectangular area in the process of
solving the problem.

3.
Inquiry questions

On the basis of the inquiry problem design principles and the
“cylinder flank area” problem-solving model, a series of questions were
posed: A potato chip factory produces a batch of potato chips that need
to be packaged on the side of the potato chip box (as shown in Fig. 6.6).
Can you help the factory calculate how many wrappers are needed for
each box?



Fig. 6.6 Chip box

(1)

The concept of design

“Affixing wrapping paper” is closely related to the actual life
situation of students.

Students analyze the problem, build a model of the problem, and
select a problem-solving strategy.

Students cut paper and pack chip boxes.
Students measure the amount of wrapping paper required.

Students calculate the area of the wrapping paper, that is, length x
width;

The area of the cylinder side is calculated. The calculation method
is summarized below.

The goal of the design

The students not only understand the cylinder side area
calculation formula but also experience the process and
significance of the formula.

The students experience the application of the formula “cylinder
side area” and determine the “side area of the cylinder”
independently to solve the problem, building strategies and
methods to deepen their knowledge of the relevant mathematical
concepts.



6.4 The Teaching Application of the Inquiry

Problem

Training students’ logical reasoning ability is advocated by The
Compulsory Education Mathematics Curriculum Standards (2022
edition) and is also one of the goals of primary mathematics inquiry
teaching. The training method uses typical problems in classroom
inquiry teaching so that students can improve their logical reasoning
skills in solving typical inquiry questions.

To validate the teaching effectiveness of inquiry questions, on the
basis of the method of the inquiry problem design method described in
the book, typical inquiry questions are designed for all knowledge
points covered in fourth-grade mathematics and used in inquiry
teaching in the mathematics classroom. For this study, we selected two
fourth-grade primary schools in Beijing, one for the experimental class
and one for the comparison class, as shown in Table 6.1. We used
typical inquiry questions in the experimental class. There were 34
students in the experimental class, including 21 boys and 13 girls. Their
ages ranged from 10-11 years; 32 students were in the contrast class,
including 17 boys and 15 girls, and their ages were between 10 and
11 years.

Table 6.1 Student situation statistics (Unit: person)

Boys | Girls |Age (10-11 years old) | Total
Experimental class | 21 13 34 34
Contrast class 17 15 32 32

During the experiment, the Raven Standard Progressive Matrices
Test was used to test the students’ logical reasoning ability. The pretest
was conducted in January 2013, and the posttest was conducted in July
2013. The experiment lasted one semester. The earliest Raven Standard
Progressive Matrices Test scale was the nontext intelligence test
designed by the British psychologist Raven (J.C. Raven) in 1938. The
scale consists of a total of five modules, A-E, of 60 pictures. The
difficulty of the modules increase; thus, the A module is the simplest,



and the E module is the most difficult. Pre- and posttests were used to
test the students’ progress, and SPSS 19 was used for data analysis.

6.4.1 Comparison of Reasoning Ability Between the
Experimental Class and Comparison Class
The pretest and posttest data of the Raven scale are shown in Table 6.2.

Table 6.2 Pretest and posttest Raven scores

Mean |Standard Standard |Minimum |Maximum
value deviation error value
Pretest Raven |Comparison |[40.05 7.93 1.82 23 53
scores class
Experimental | 40.85 6.54 1.12 31 55
class
Posttest Comparison |42.84 6.64 1.52 24 52
Raven scores |class
Experimental | 48.24 5.03 0.86 36 58
class

As shown in Table 6.2, the means of the Raven scores in the pretest,
experimental and control classes are very close (the difference is only
0.8), whereas mean for the experimental group in the posttest phase is
5.4 higher than that of the comparison class.

The typical inquiry question in the teaching process was used as the
independent variable, and factor analysis of single variance was used to
compare the pretest and posttest Raven scores in the experimental
class and the comparative class. The results are shown in Table 6.3.

Table 6.3 Variance analysis

Quadratic sum | df | Mean square | F Significance
Pretest Raven scores |7.807 1 (7.807 0.16 |0.69
Posttest Raven scores [ 354.526 1 |354.526 11.0910.00

Table 6.3 shows that in the pretest stage, F = 0.156, the significance
level is p=0.69 > 0.05, and there is no significant difference between
the experimental class and the comparison class. In the posttest phase,



F=11.09, the significance level is p=0.00 < 0.05, and the Raven results
of the experimental class and comparison class were significantly
different. These findings indicate that the use of typical inquiry
questions effectively improves the inference ability of experimental
students.

6.4.2 Comparative Analysis of Mathematical Reasoning
Ability in the Experimental Class

Considering that age has an effect on grades, the score in the sample
was compared with the norm for age to exclude the impact of aging.
Consequently, the score could be categorized into eight levels, namely,
the Raven grade. The pretest and posttest Raven scores and Raven
grades of the experimental class are shown in Table 6.4.

Table 6.4 Experimental class Raven score and Raven grade pretest and posttest means

Mean N |[Standard Standard error of mean
value deviation value

Pretest Raven scores |40.85 34|6.54 1.12

Posttest Raven

scores 48.24 3415.03 0.86

Pretest Raven scores | 4.29 3411.19 0.21

Posttest Raven

scores 5.41 34|1.26 0.22

Paired samples t tests were performed on the pretest and posttest
data of the experimental class, as shown in Table 6.5.

Table 6.5 T tests of paired samples in the experimental class

Paired difference t df | Sig
Mean |Standard |Standard error of (Bilateral)
value [deviation mean value
Pretest Raven scores— -7.39 [4.78 0.82 -9.01|33]0.00
Posttest Raven scores
Pretest Raven scores— -1.12 2.20 0.21 -5.4313310.00
Posttest Raven scores
Pretest A module— -0.38 [0.74 0.13 -3.02(33]0.01
Posttest A module




Paired difference t df |Sig
Mean |Standard |Standard error of (Bilateral)
value |deviation mean value
Pretest B module— -0.71 |[1.51 0.26 -2.7313310.01
Posttest B module
Pretest C module— -1.32 |1.61 0.28 -4.80133]0.00
Posttest C module
Pretest D module— -1.74 |[2.09 0.36 -4.8313310.00
Posttest D module
Pretest E module— -3.24 |[2.16 0.37 -8.7313310.00
Posttest E module

The data in Tables 6.4 and 6.5 reveal that the experimental class
reasoning ability paired t test sample number was 34, the average
pretest Raven score was 40.85, the average posttest Raven score was
48.24, and the average Raven score increased by 7.39 from pretest to
posttest. The significance level p=0.00 <0.001 reached a very
significant level. In other words, when typical inquiry questions were
used to teach, students significantly improved their mathematical
reasoning ability. The standard deviation of the posttest data was less
than the standard deviation of the pretest data; that is, the degree of
dispersion decreased, and the average value increased, indicating that
the scores of the low-scoring students in the pretest improved. In other
words, using typical inquiry questions improves the learning
performance of students with poor mathematical reasoning ability.

An analysis of the Raven grade pretest and posttest data revealed
that the average pretest Raven grade was 4.29, and the average posttest
Raven grade was 5.41. In other words, the average levels of the pretest
and posttest middle school students’ Raven grades were in the upper
middle range. The average posttest level was 1.12 higher than the
average pretest level, which is a difference higher than one level, and
the significance level p=0.00 < 0.001 indicated extreme significance. In
other words, the use of typical inquiry questions before and after
teaching significantly improved students’ mathematical reasoning
ability.

Further analysis of the pretest and posttest data of the five modules
of A-E in the Raven scale revealed that the promotion of the three
modules of C, D, and E was more significant, with a significance level of



p=0.00<0.001, indicating a very significant level. Part E, the most
difficult part, showed the most significant improvement. These findings
indicate that the use of typical inquiry questions in primary school
mathematics classroom teaching plays an important role in improving
students’ advanced mathematical reasoning ability.

6.5 Summary

Mathematics teaching advocates inquiry learning, and the inquiry
problem is the key to effectively implementing inquiry learning. How to
design a typical inquiry problem is a common concern for the majority
of primary and secondary school mathematics teachers and is an
important part of inquiry teaching. Teachers carry out effective
interactions in the process of student inquiry and conduct targeted
guidance according to the characteristics of the inquiry problem. In the
process of inquiry teaching, the design of typical inquiry questions
needs to fully promote students’ enthusiasm, relate to their real lives,
and correspond to students’ physical and mental development and the
characteristics of the mathematics curriculum.

This chapter discusses research on inquiry problem design from the
aspects of the inquiry teaching mode and strategy, the type and design
of inquiry questions, and mathematical inquiry learning supported by
information technology. The basis and principles of primary school
mathematics inquiry question design are proposed as follows: (1) The
problem statement is in line with the cognitive level of primary school
students. (2) The problem situation is related to students’ real lives. (3)
Knowledge is implied in the process of solving problems. (4) Students
experience the process of knowledge generation. (5) The model idea is
integrated into the problem design process. This chapter is based on
these design principles, given the preclass exploration question design
process of the “mode” and “cylindrical side area.” Accordingly, the
typical inquiry questions are designed for all knowledge points of
fourth-grade mathematics, an experimental teaching method is
explored in the mathematics classroom, and the experimental results
are analyzed.

The reasonable use of inquiry questions in the elementary school
mathematics classroom arouses students’ interest in mathematics



learning, attaches importance to students’ experience in exploring
mathematics, promotes and improves students’ mathematical thinking
ability, encourages students’ creative thinking ability, proactively
cultivates good mathematical study habits, improves their ability to use
mathematical knowledge to solve practical problems, provides a basis
and reference for the application of technology in mathematics inquiry
teaching, and provides a basis for conducting “one-on-one” cognitive
diagnosis.
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Cognitive diagnosis is the application of cognitive analysis in teaching.
On the basis of the problem-solving cognitive process analysis and
cognitive simulation discussed in Chaps. 4 and 5, we propose the
following to deepen the understanding cognitive operations and
cognitive components in the process of problem solving and to explore
the cognitive process of “one-on-one” cognitive diagnosis on the basis
of a cognitive model. Specifically, more detailed and more targeted
guidance and advice for educational practice and individual
development can be provided to students, especially those with
learning difficulties.

Many countries stress the importance of improving student
achievement. In January 2001, the Bush Administration passed the No
Child Left Behind Act (NCLB) (U. S Department of Education, 2001) in
the United States. This act listed “improving the academic performance
of underprivileged students” as the first area of seven priorities. It
proposed that public education evaluation should provide descriptive
and diagnostic reports to each student, parent, and teacher. To better
meet the specific requirements of the bill, the Obama administration
later approved the Elementary and Secondary Education Act (ESEA)
(U.S Department of Education, 1965) in September 2011 to better focus
on improving students’ learning and teaching quality.
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Compulsory education in China also greatly emphasizes the
development of all students and highlights the purpose of learning
evaluations. For example, The Compulsory Education Mathematics
Curriculum Standards (2022 edition) (Ministry of Education of the
People’s Republic of China, 2022) highlights how the mathematics
curriculum should provide every student with good math education
and allow different people to distinguish mathematical development.
The main purpose of a learning evaluation is to fully understand the
process and results of student learning, encourage student learning and
improve teachers’ instructional methods. The past form of study
evaluation, which focused on the results and ignored the learning
process, has been changed.

An essential element of education is evaluation. Learning
evaluations focus on the learning process, and problem solving is an
important part of learning. The theories and methods of cognitive
diagnosis (CD) are inseparable components when measuring and
evaluating the cognitive process of students’ problem solving. Cognitive
diagnosis emphasizes the learning process and identifies deficiencies in
the process. The diagnostic results are provided to students, parents,
and teachers to help students improve their learning and to improve
teachers’ teaching quality.

7.1 Cognitive Diagnosis of Primary School

Mathematical Problems

Solving mathematical problems has always been the focus of research
in psychology and mathematics education in China and abroad (Chen et
al.,, 2004). Montague studied students in Grade 6 with learning
difficulties and the role of cognitive and metacognitive strategies and
subsequently proposed cognitive and metacognitive teaching models to
solve applied problems (Montague, 1992).In this model, Montague
broke down the cognitive process of solving problems into seven
stages: reading, analyzing, visualizing, presuming, estimating,
calculating, and checking. Jitendra applied schema teaching to study
children with poor learning performance and conducted systematic
research. She used pictorial instruction to develop effective
interventions for students with poor performance on application



problems in math. With the exception of a few individual cases, most
students’ problem-solving strategies improved.

Tatsuoka employed diagnostic tests to compare the math scores of
eighth graders from 20 countries and analyzed the data via the Third
International Math and Science Study-Revised. Tu et al. (2010) applied
cognitive diagnostics to study the process by which primary school
children solve mathematical problems and explored the characteristics
of children’s cognitive development with respect to their mathematical
problem-solving ability and shortcomings to promote children’s
cognitive development and knowledge acquisition. These studies
provide an important theoretical basis for studying the cognitive
diagnosis of primary school mathematics problem solving.

7.1.1 Cognitive Diagnosis Analysis of Students Answering
the Application Questions

Many scholars have analyzed errors in problem solving with respect to
mathematical problem statements. Hayes et al. reported that if students
were able to correctly judge the overall sentence structure of math
application problems, then they could correctly identify the necessary
information amid redundancy or irrelevance in a long text description.
However, students had difficulty identifying necessary information if
they misjudged the type of problem, and students could be easily led to
make mistakes in problem solving. Meyer’s study revealed that, overall,
students are more likely to correctly conclude that relevant information
is necessary (accuracy rate of 89%) but have difficulty understanding
that irrelevant information is unnecessary (accuracy rate of 54%)
(Mayer, 1987). He and Fu (1995) analyzed the question representation
and problem-solving results of 34 college students and reported the
relationship between the problem statement and problem-solving
errors. Anand and Ross (1987) reported that the major reason for
students’ errors in solving application problems was their
misinterpretation of the problem statement rather than any calculating
difficulties. Shi Tieru collected and analyzed the data collected from
oral problem-solving reports and found that a crucial reason for
incorrect problem solving is the inability to correctly identify the
model, which often caused students to blindly try to solve the problem
and repetitively search for solutions (Shi, 1985). Kotovsky et al. (1985)



studied the different characteristics of problem isomorphs and
systematically analyzed the reasons for the different difficulty levels of
the problems. The experimental results showed that the problem
structure cannot explain the difficulty of the problem from the
perspective of the problem structure. The difference in the ways in
which problems are imagined, constructed or considered is the key to
determining their difficulty.

The studies above analyzed the relationship between problem
presentation and problem-solving errors and identified the causes of
problem-solving errors, but they did not provide pertinent measures to
help students correct mistakes.

7.1.2 Mathematical Cognitive Diagnosis Through Cognitive
Neuroscience

Cognitive neuroscience employs brain imaging and other methods to
explore the core of mathematical cognition and to make new
interpretations of the physiological processes and environments that
address the barriers of mathematical problems. According to Rotzer et
al., brain regions associated with processing the size of numbers in
children with impaired computing ability present structural
abnormalities in the brain. De Smedt et al. (2009) reported that human
chromosome 22q11 deletion syndrome was associated with
maladjustment. Kaufmann et al. (2009) reported that brain regions
associated with processing the number sizes in children whose brains
had impaired computing ability presented structural abnormalities.
With increasing research on mathematical cognition in cognitive
neuroscience, cognitive neuroscience and math education are being
effectively combined. Cognitive neuroscience methods are used to
provide a reliable basis for the assessment of mathematical cognitive
impairment and effective interventions for diagnosing the reasons for
mathematical cognitive impairment, thereby helping students with
cognitive impairment improve their math learning performance.
Nearly all domestic researchers use the latest or several recent
math scores of students as indices to measure students’ mathematical
ability. However, examinations are usually given periodically; they
generally correspond to the knowledge students learned during a
certain period of time, which is related to the degree of difficulty of the



questions. However, it is unclear whether mathematics scores can
reflect students’ authentic mathematical ability. The diagnosis of
mathematical impairment should be established on the basis of a
comprehensive and accurate assessment of students’ mathematical
ability.

Therefore, when diagnosing mathematical impairment, the
student’s cognitive process of problem solving should be focused on
rather than just the result of problem solving. Through the analysis of
the problem-solving cognitive process, we can objectively identify
problem-solving difficulties and perform targeted diagnosis and
intervention.

7.2 The Purpose and Characteristics of “One-
on-One” Cognitive Diagnosis

Most traditional tests are paper and pencil tests. Traditional tests often
adopt the form of “one test for all” or “one question for all,” and
researchers’ attention often focuses on the test results. As tests
measure only test scores or ability scores, the information is simple.
With a single score, teachers and researchers cannot identify the
knowledge that students have mastered and that which they have not,
and researchers cannot analyze the reasons for students’ problem-
solving errors. For students with the same test score, it is impossible to
determine the differences in knowledge mastery and cognitive
processing that may exist between them. The exam is not designed to
evaluate students’ abilities but rather to identify the problem more
accurately.

The purpose of cognitive diagnosis is to diagnose students’
advantages and disadvantages, especially their shortcomings and
difficulties in solving mathematical problems, and 25 provides a
reliable basis for teaching interventions.

Although the results of cognitive diagnosis provide a reliable basis
for teaching interventions, they do not provide an implementation plan
for how to use these interventions in student learning and teaching.
However, difficulties are often encountered when diagnostic findings
are used in teaching to motivate students to learn and improve their
learning performance. Roussos et al. (2007) researched the validity of



cognitive diagnosis through investigations and interviews and reported
that teachers and students had a difficult time integrating diagnostic
results into learning and teaching. Polia believed that diagnosis is a
more detailed assessment of a student’s learning. To improve students’
academic performance, teachers need to assess students’ strengths and
weaknesses in detail (Tu et al., 2007). According to Vygotsky’s “recent
development zone” theory, different children (or the same children) can
have different areas of recent development zones in different cognitive
domains and benefit from teaching in different contexts. Geert P. V.
(1998) advocates that diagnosis and teaching should be based on
children’s current and future levels of development. DiBello and Stout
(2007) emphasizes that the purpose of an exam is to provide students
with the information they need to understand the problem and to
provide information to be used directly for instructional and student
learning. Lane S. (2004), Leighton (2004) reported that few large-scale
tests generate diagnostic information on a candidate’s thought process.
Few large-scale tests have clear inference goals. Therefore, the
diagnosis of different levels of student intervention is necessary.

The Compulsory Education Mathematics Curriculum Standards (2011
edition) emphasizes that the main purpose of evaluation is to fully
understand the process and results of student learning and to
encourage students to learn and teachers to improve teaching.
Moreover, the 2022 edition underscores the importance of guiding
students to discover and articulate problems within real-world scenarios.
Evaluations should give attention to the results of student learning and
the learning process(Ministry of Education of the People’s Republic of
China, 2022). “One-on-one” cognitive diagnosis is a dynamic
assessment method that combines teaching and diagnosis to meet the
different levels of children’s current and future development. It is
characterized by an emphasis on a “one-on-one” orientation, a balance
between the assessment of learning outcomes and the analysis of the
learning process, and a combination of identification and classification,
diagnosis and prescription. The aim is to assess each student’s
strengths and weaknesses in an in-depth manner and to provide timely
and appropriate feedback on the student’s problem-solving
performance to guide them through the process, help them achieve
their goals and facilitate learning.



The Compulsory Education Mathematics Curriculum Standards (2022
edition) also emphasizes that teaching activities should strive to help
all students to meet the basic requirements of the curriculum objectives
while focusing on the individual differences of students and promoting
the development of each student on an individual basis. For students
with learning difficulties, teachers should give timely attention and
assistance to encourage them to take the initiative to participate in
mathematical learning activities, try to solve the problem on their own,
and express their views. Teachers must promptly acknowledge
students’ progress, patiently guide them to analyze the causes of their
difficulties or mistakes, and encourage them to correct their mistakes
to increase their interest and confidence in learning mathematics
(Ministry of Education of the People’s Republic of China, 2022). “One-
on-one” cognitive diagnosis focuses extra attention to the learning
process of students with learning difficulties and records and analyzes
the cognitive changes of students during different stages of problem
solving.

7.3 “One-on-One” Diagnosis Based on the

Cognitive Model

7.3.1 Diagnostic Process

To study children’s cognitive development, Piaget adopted multiple
research methods, such as observation and clinical methods. Campbell
and Carlson stated that using these methods to study cognitive
diagnosis has great significance (Campbell & Carlson, 1995).
Researchers (Kane, 1992; Messick, 1989 have argued that the
cognitive model of learning is an important component of describing
test structures, designing test questions, and generating diagnostic
inferences on the basis of test scores. In the process of “one-on-one”
cognitive diagnosis, we design typical problems on the target
knowledge points, analyze the correct problem-solving cognitive
process and students’ actual cognitive process in problem solving on
the basis of CMMPS, compare the similarities and differences between
the two processes, and use the results to determine students’ problems.



The cognitive model-based “one-on-one” cognitive diagnosis is shown
in Fig. 7.1.

Fig. 7.1 Model-based “one-on-one” cognitive diagnosis

(1)

Cognitive process analysis of problem solving via CMMPS

Yang et al. suggested that cognitive diagnosis tests in education or
psychology should measure at least three aspects of cognitive
characteristics: (1) The more important knowledge or skills in a
particular cognitive field, which are the foundation for higher level
ability construction; (2) the knowledge structure, which indicates not
only the quantity of knowledge and skills but also how people organize
these types of knowledge and skills; and (3) the cognitive process Yang
& Embretson, (2007). The “one-on-one” cognitive diagnosis fully
considers these three aspects of cognitive characteristics: the analysis
of the primary school mathematics problem-solving cognitive process
is the foundation, the mastery of the knowledge and skills needed to
solve elementary school mathematics problems is the key, and the
knowledge of elementary school mathematics problem-solving
knowledge or skills is the guarantee. These bases of the CMMPS
analysis of typical problems can help researchers obtain the correct
problem-solving cognitive process.

(2)

Data collection via oral reports

Leighton & Gierl, (2007) applied the oral reporting method to
collect data to use as the basis of cognitive diagnosis. In “one-on-one”
cognitive diagnosis research, oral reports are used to collect data from



students during the process of problem solving. Then, on the basis of
the CMMPS analysis of the oral report data, the actual problem-solving
cognitive process is obtained.

(3)
Formulation of a diagnostic scheme

By comparing and analyzing the results of (1) and (2), we identified
the cognitive process that led to the incorrect solution of the problem
and formulated a diagnostic scheme accordingly.

(4)

Intervention with students

The intervention process draws on the famous mathematician and
mathematics educator Polya’s idea of the four stages of mathematical
problem solving,.

First, understand the problem. It is important to understand the
problem statement and clearly know what the problem is asking.

Second, arrange a plan. It is important to understand how each item
is related, including the relationship between the unknown variables
and the collected data, to obtain ideas for problem solving and develop
a plan.

Third, implement the plan. The plan created in the second step is
implemented.

Fourth, review, examine, and discuss the answers.

(5)

Impact assessment

Considering differences in students’ problem-solving ability, we
select appropriate questions from the question database to evaluate the
effect of cognitive diagnosis. If the effect is not satisfactory, we need to
design another typical problem to conduct cognitive diagnosis and
intervention for students.

7.3.2 Role of the Cognitive Model

Through surveying teachers, we found that primary mathematics
teachers’ diagnosis of the causes of students’ problem-solving errors
depends on their personal experience and intuition. These diagnoses



lack objectivity and scientific support. The cognitive model can assist
with cognitive diagnosis.

(1)

Provide a reliable basis for cognitive diagnosis

Given that medical diagnosis requires standard data, the diagnosis
in educational contexts also requires such data. The problem-solving
cognitive model CMMPS can analyze the cognitive process of problem
solving and provide a reference for cognitive diagnosis.

(2)

Clearly identify the cause of the problem-solving errors

By analyzing the problem-solving process through CMMPS, we
aimed to capture the cognitive process of correctly answering questions
and used the process as a stepping stone. To obtain the cognitive
process of making problem-solving errors, we identified the internal
process that led to the errors, clearly identified the causes of the errors,
and then provided target intervention.

7.4 Improvement of Mathematics Teaching

7.4.1 Paying Attention to Individual Differences in
Students’ Abilities

“One-on-one” cognitive diagnosis can identify the deficiencies of the
ability to solve mathematical problems for each student and can use
students’ incorrect performance in the process of solving problems to
identify problems of different difficulty levels for students with
different ability levels. When students encounter difficulties in the
problem-solving process, teachers ask leading questions, gradually
guide the students to provide correct solutions to the problem, respond
to students’ various requests and promote the sustainable development
of students’ mathematical abilities.

7.4.2 Early Identification of and Intervention in
Mathematical Cognitive Impairment

Through “one-on-one” cognitive diagnosis, it is proposed to identify
learning difficulties in advance and reduce or eliminate them through



corresponding remedial measures. By analyzing students with learning
difficulties, we aimed to identify the cognitive barriers that lead to
learning difficulties for different types of questions and various grades
and analyze the causes of cognitive impairment. As the famous saying
goes, “Rome wasn’t built in a day”; the cognitive obstacles of students in
higher grades may gradually accumulate from learning in the lower
grades. Therefore, cognitive impairment should be prevented and
interventions should be implemented in the lower grades, thus
generating a positive impact on learning. For example, consider a
student who has a problem with two-digit multiplication. A careful
analysis of the student’s calculation process could enable the teacher to
know that the student has mastered the simple rules of multiplication
but makes mistakes in “carrying the addition,” which is to say, the
student has formed a certain cognitive model in his or her brain. To
solve this problem, when teachers teach first graders the calculation
method for the first time, they should guide students to pay extra
attention to carrying the addition, apply an instructional method that is
suitable for students’ cognitive characteristics and be patient when
providing explanations. By doing so, teachers can effectively prevent
potential learning problems that may arise in future learning with
minimal effort.

7.4.3 Specific Guidance for Students with Cognitive
Impairment in Mathematics Learning

An analysis of the cognitive impairment of students with learning
difficulties revealed that similar or identical cognitive impairments
exist within the same grade. To conduct an in-depth analysis of the
typical characteristics of cognitive impairment, we identified the
reasons for the latter and formulated effective interventions to provide
targeted guidance for students with typical cognitive impairment. To
change the current situation of “one set of instructions for all students,”
targeted guidance, on the one hand, can save students’ time and
increase their interest in learning mathematics, and, on the other hand,
can target specific mathematical problems with in-depth explanations
and thus apply methods depending on the situation. It is a good choice
to conduct “one-on-one” cognitive diagnosis in schools with good
teaching conditions.



7.4.4 Making Good Use of Students’ Zone of Proximal
Development to Promote Cognitive Development

Teachers can learn from the diagnosis of students’ cognitive level, use
education goals and objectives as a reference, formulate a series of
intervention strategies, present them to students in the appropriate
sequences, and consciously participate and intervene in the learning
process. In this process, students acquire knowledge, skills and
problem-solving strategies, internalize them into their original
cognitive structure, form new cognitive structures, and further promote
their cognitive development. Feuerstein noted that the experience of
intermediary learning accompanies the process of growing up. The
quality of intermediary learning directly affects the cognitive
development of individuals.

7.5 Summary

This chapter discusses the application of problem-solving cognitive
process analysis in teaching, i.e., “one-on-one” cognitive diagnosis and
intervention. This chapter first defines the concept and theoretical
basis of cognitive diagnosis. It then analyzes the cognitive diagnosis
that was conducted on teaching primary school math problems and
proposes “one-on-one cognitive diagnosis.” This chapter explains the
purpose and characteristics of this diagnostic method, emphasizes the
pertinence and timeliness of intervention, proposes a method and
process of diagnosis, and finally discusses the implications of cognitive
diagnosis for mathematics education.

Studies abroad have been actively examining cognitive diagnosis.
Many theoretical and applied studies have been carried out and have
achieved satisfactory results. In China, research on cognitive diagnosis
is in contrast relatively limited, and the majority of such studies are
introductory and theoretical, which can hardly be used to guide
practical teaching. Even fewer empirical studies examine the cognitive
diagnosis of mathematical problems, especially in primary schools,
which should be further studied.
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8.1 Experimental Design

The “one-on-one” cognitive diagnosis and intervention experiments
include the following sections.

(—) Preknowledge test

This test is used to judge students’ mastery of the prerequisite
knowledge required for learning new knowledge points. Preknowledge
testing also tests some of the new knowledge points. An additional test
is given to students who answer the questions correctly to determine
whether the student has already mastered the new knowledge to
ensure that learning occurred in the experimental process.

(=) Typical problem design

Typical problems are designed to test representative knowledge
points according to the daily lives of students. These problems include
preclass inquiry and after-class inquiry.

(=) Preclass inquiry

Preclass inquiry questions are assigned to students to be completed
independently one day before the new class is taught. The oral
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reporting method is employed to record students’ problem-solving
process. Data received from oral reports are translated and used for
analyzing the cognitive process of students’ problem solving and
mistakes made in the process and for formulating an appropriate
intervention plan.

(I9) After-class study

After class, all planned problems are taught, and students’ mastery
of new knowledge is examined through inquiry. The oral reporting
method is used to record students’ process of analyzing and solving
problems.

(11) “One-on-one” cognitive diagnosis intervention

Some students who incorrectly solve problems are selected for a
“one-on-one” diagnosis and intervention. For students whose cognitive
diagnosis intervention is unsuccessful, a second cognitive diagnosis
intervention is implemented.

The “one-on-one” cognitive diagnosis and intervention process is
shown in Fig. 8.1.

Fig. 8.1 “One-on-one” cognitive test procedure

8.2 Empirical Study of “One-on-One” Cognitive

Diagnosis of Declarative Knowledge
8.2.1 Purpose



The concept of “mode” is a knowledge point in the sixth unit,
“statistics”, of the math textbook for fifth graders (Course Textbook
Institute, 2006). It is a typical example of declarative knowledge. The
purpose of the experiment is to carry out “one-on-one” cognitive
diagnosis and intervention for students who have difficulties with
declarative knowledge problem solving and then analyze and compare
the changes in students’ problem-solving abilities before and after the
intervention.

8.2.2 Methods
(—) Subjects

A total of 28 students in the fifth grade of Yongliang Primary School
in Gaoyang County, Hebei Province, were selected as subjects. Of the
students, 10 were boys and 18 were girls, with an average age of
134 months and an age range of 129-143 months.

(=) Materials

“Mode” application questions in fifth-grade math are examples of
typical declarative knowledge and represent a new knowledge point for
students who have mastered the required prior knowledge. The
application of “mode” is presented in the form of a “birthday” situation,
in which students are closely connected with their daily life. They are
given the role of “the classroom teacher”. Through solving the actual
problem, students are expected to summarize the method of
determining the “mode” (students do not know that they are being
asked to provide the “mode”). The researchers then diagnose any
problems that students exhibit in determining the mode.

The test materials are designed for the purpose of this study and are
as follows:

1. Preclass knowledge test

(1) China has a profound history and culture of surnames, and
each surname has a unique and rich cultural connotation.
Imagine that you want to rank the surnames in our class:

(1) How would you collect students’ surnames?
(2) Count the number of occurrences of each surname.



(3) Arrange the surnames in descending character stroke
order.

(2)
Find the average and the median of the numbers listed below
and show your calculation process.

3.6,2.4,2.8,29,3.2,2.1,2.2

(3)
Please fill in the blanks according to the 25 numbers given.

1.32 1.33(1.33|1.33(1.33|1.33(1.33|1.44
1.45 1.46(1.46|1.47(1.47|1.48(1.48|1.49
1.50 1.51({1.51|1.52(1.52|1.53|1.54|1.55|1.55
1.32 is (minimum)
1.55is()

1.47 is (median)
1.33is()

2.
Pretest additional questions

Think about the “mode” problems in everyday life and provide
reasons.

3.
Oral report training questions

The oral report training questions are shown in Fig. 8.2.

ifth grade (3} chass TRpe skippivg fests S s Tt group of
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Fig. 8.2 Oral report training questions

4,
Preclass inquiry



Please brainstorm and come up with a good idea to help your head
teacher with the following question:

Our class is going to have a birthday celebration next year, but we
can only celebrate students who were born in a certain month. Imagine
you are the head teacher:

(1)
What factors would you consider?

(2)
(3)

5.

How are you going to choose the month?
Which month should be chosen? Why?

After-class inquiry

A shoe factory plans to promote a batch of new sports shoes, and
the factory intends to provide shoe samples of a certain size for free
trial to our students. If you are the student representative, how would
you choose the shoe size?

6.
The first diagnostic intervention topics

(1) _ _
Data collection topics

The visual acuity of the left eye of Grade 5, Class 1 students is as
follows:

5.0 |49 |53 |52 (4.7 |52 |48 |51 |53 |52
4.8 |50 (45|51|49 (51|47 (50 |48 |51
5.0 (48|49 (51|45 |51 (4.6 |51 |47 |51
5.0 (5.1|5.1({49|5.0|51 (52|51 |46 |50

What is the mode of this set of data?

(2) ,
Strategy topics



The entire school needs to choose one place for a spring tour, and
the available options are as follows:

A. Beijing Tiananmen Square B. Baiyangdian C. Taishan Mountain
If you were the principal, how would you choose?

7.
Second diagnostic intervention topics

(1)

Data collection topics

A shooting team needs to select one of two athletes to participate in
a competition. They each play 10 rounds of ammunition. The results are
as follows:

A:|95(10]9.3]9.5]969.5]9.4|95]9.2]95
B:[10 (9 |10 [8:3|9.8{9.5 |10 [9.8(8.7 9.9

(1) What is the average and mode of each athlete’s scores?
(2) Who do you think should participate in the competition? Why?

(2) _
Strategy topics

The school plans to hold a New Year’s party. Each class can perform
only one show, but our class has three candidate programs:

(1) The solo song “Where is spring” by Xiao Ming

(2) The solo dance “We are the flower buds” by Xiao Hong

(3) A poetry recitation of “Facing the Ocean, Spring and Blossom” by
Xiao Lan

For the sake of fairness, if you were the classroom teacher, what
would you do?

(=) Procedures

1.
Design an experimental program



According to the purpose of the experiment, the experimental
subjects, materials and instructions are finalized, the overall
experimental process is determined, and the experimental results are
obtained.

2.
Experimental equipment

A single recording pen, a Sony video camera, and a tripod were used
to record the data generated from the oral reports.

3.
Pretest

After the prerequisite knowledge required to solve the “mode”
problem was analyzed, suitable questions were designed and applied to
test students’ understanding of the prerequisite knowledge. Students
who correctly answered questions in the pretest were asked to answer
the extra set of questions to determine whether they had mastered the
“mode” concept.

4,
Verbal reports and records

The verbal reporting method was applied to collect the data. In
accordance with the think aloud protocol developed by Erickson and
Simon, the participants were trained to verbally convey their thinking
process through the problem-solving process. Before starting the
question, the researcher first briefly explained the guidelines and then
used an example to demonstrate how to thoroughly reflect the thinking
process during the problem-solving process. After the participants
confirmed their understanding, they started to answer the questions,
and a video camera was used for recording the process.

5.
Data translation and coding

The data collection included two parts: a verbal report and video
recording of the problem-solving process. For the verbal report data,
the translator first dictated the audio files into the texts and then
combined the students’ problem-solving assignments to conduct coding



analysis to diagnose learning difficulties. The coding work was
undertaken by two professionals, and disagreements during the coding
process were resolved through discussions.

6.
Preparation of intervention programs

According to the collected verbal reports and problem-solving
videos, we analyzed the students’ thinking and obstacles in the process
of solving problems and formulated specific intervention plans, such as
tips to help students solve problems and obtain better performance.

7.
Interview

An interview was conducted with the teachers in the course of the
students’ problem-solving process to understand the typical
performance of the students and to refine the intervention programs.

8.
Intervention

An intervention program was used to address students’ difficulties
in the problem-solving process. The participants were given sufficient
time to work on the questions, and their responses were observed.

0.
Effect evaluation

The evaluation of students’ knowledge mastery was conducted
through a questionable design.

(IV) Experimental duration

The dates of the experiment were December 12-15, 2011.

8.2.3 Results Analysis

Throughout the experiment, 28 students in 5th grade participated in
the preclass inquiry question verbal report experiment. All the students
participated in the after-class inquiry question verbal report
experiment, 18 students participated in the first cognitive diagnosis
intervention, and 13 students participated in a second cognitive



diagnosis intervention. Over the course of two cognitive diagnosis
interventions, each student was provided two categories of questions:
data statistics and strategic solutions. A total of 118 verbal reports
were obtained during the experiments.

(—) “One-on-one” cognitive diagnosis of the overall effect analysis

Table 8.1 shows the statistics of the pretest results for the “model”

Table 8.1 “Mode” prerequisite knowledge test results

1(1)|1(2)({1(3)|2(1)|2(2)|3 4
The correct number of people |8 23 |20 |25 (26 |9
Correctrate (%) 28.6 [82.1 |71.4|89.3 1929 |32.1|7.1

In the table, 1 (1) represents the first question in the pretest, 1 (2)
represents the second question in the pretest, and so on. The statistical
results revealed that, for the first question, 1 (1), which examined how
the students collected data, 8 students adopted the method of writing
the last name on paper first and then calculating the statistics, and the
strategy was clear. However, the other students used direct counting. 1
(2) shows the results of the surname statistics; five students missed a
few surnames and made a statistical mistake. 1 (3) tested the surname
arrangement; 8 students incorrectly arranged the surnames and
therefore made some mistakes. The analysis revealed that the choice of
statistical strategy was more difficult than the specific statistical
process. For question 2, 3 students made mistakes on question 2 (1)
“average” and 2 students made mistakes on question 2 (2) “the median
question”. The median was easier to compute than the average was
because the latter involved summation and division calculations, and
both calculation processes were prone to errors. Question 3 examined
students’ understanding of the learned concepts; the accuracy rate was
lower than one-third. Nine students filled in “the number appeared
most” (not knowing that “the number appeared most” is the “mode”).
Question 4 is an additional test that was given to the students who
answered the previous questions correctly. It examines whether
students understand the concept of “mode”. Only two students provide
situational examples; for example, the first digit of a phone number in



China is a “mode”, which is 1, and the number of students who
answered correctly is 7.1%. The above results indicate that the
prerequisite knowledge required to learn the mode was mastered by
the majority of the students, whereas the concept of the mode was new
knowledge for 92.9% of the students.

A total of 28 participants participated in the preclass exploration
phase. Among them, MaYY, DuanYM, and WangYF answered the
questions correctly, accounting for 10.7% of all participants. WangWY
and Duan]N understood the meaning of the questions but lacked a
comparative strategy. Specifically, they did not know how to compare
the numbers of people who had a birthday in each month and
accounted for 7.2% of the participants. MaYP, ZhangN, DuanYC,
DuanZX, DuanH]J and CuiW did not understand the meaning of the
“classroom teacher”, accounting for 21.4% of the participants. LiuZ,
LiuML, DuanQ, XingQL, ChengYN, WangC, and 14 other students
obtained no solution to the problem, accounting for approximately 50%
of the participants. Verbal report analysis revealed that most students
did not solve the problem with only one strategy. In the course of
problem solving, the strategy of solving the problem changed.

An analysis of the verbal reports of the preclass experiments
revealed that the main difficulty exhibited by the students was a lack of
solutions to the questions (50%), followed by a failure to understand
the questions (21.4%). Students who understood the problem and
knew the problem-solving strategy but still made mistakes constitute
the third category (17.9%). Students who do not understand the
problem certainly lack problem-solving strategies. During the lecture or
teaching process, to help students understand the instructions,
teachers should draw on daily life situations, emphasizing the
“birthday” situation and the role of the “classroom teacher”. To address
the statistical errors, teachers should invite the students who make
mistakes to count “birthdays” in class. After clarifying the instructions,
the research proceeded to the inquiry stage.

A total of 27 students participated in the after-class inquiry phase,
among whom 17 students (LiuZ, DuanYD, DuanZX, Du-an]N, ZhangN,
WangWY, DuanXY, WangSY, XingQL, DuanQ, Du-anXT, LiuJ, MaJW,
ChengY, DuanYM, MaYY) correctly answered the question, accounting
for 63% of the sample; WangC, LiuML, MaHR, DuanXN made statistical



errors, accounting for 14.8% of the sample; DuanYC, ChengYN did not
present a clear problem-solving strategy, accounting for 7.4% of the
sample; and MaYP, DuanH], WangYF, and LiuYR did not understand the
meaning of the question, accounting for 14.8% of the sample. Table 8.2
shows the results of the survey and after-school research.

Table 8.2 “Mode”

knowledge question, preclass and after-school survey results

Correctly Did not Problem solving Statistical
answered the understand the |strategy was not error
question problem clear

Preclass study |10.7 21.4 50 17.9

(%)

After-school 63 14.8 7.4 14.8

exploration

(%)

As shown in Table 8.2, after the classroom intervention, the
students experienced different degrees of improvement in problem-
solving comprehension, problem-solving strategies and statistics,
which shows that learning had taken place and that the intervention
was effective.

For students who did not correctly answer the questions, “one-on-
one” cognitive diagnosis and intervention were applied.

(=) Changes in the cognitive processes before and after the
diagnosis of students’ problem-solving difficulties

To compare the changes in students’ problem-solving performance
before and after the intervention, WangC is used as an example. We
analyzed the changes in this student’s cognitive process through the
use of verbal report data.

1.
Preclass inquiry stage

The date of the preclass inquiry was December 12, 2011.
The CMMPS-based “mode” preclass inquiry problem-solving
cognitive process analysis is shown in Table 8.3.

Table 8.3 “Mode” preclass inquiry question problem-solving cognitive process analysis



Visual |[Production Retrieval |Goal Imaginal | Manual
Text
encoding
Relevant
semantic
knowledge
in DM
Which Which
month month
should be should be
chosen? chosen?
Choose a month to
celebrate students’
birthdays, assume the class
teacher role — select the
month with the most
birthdays (in line with
common sense)
Select the
month with
the most
“birthdays”
(target
conversion)
Select the
month that
has the most
number of
students with
birthdays,
and then
choose that
month
Select the
month
that has
the
highest
number
of
students
with

birthdays




Visual [Production Retrieval |Goal Imaginal | Manual

8 Statistics on

the number
of student
birthdays in
amonth
9 Statistics,
counting

10 Compare

the
number
of
birthdays
each
month

11 The

comparison

of size of

the number

12 Choose the

month with
the largest
number of
“birthdays”

13 The “month”
with the
largest
number of
birthdays

14 Finish

Each column represents the content of a module at different times

in the problem-solving process. The leftmost column of numbers
indicates the row number, and each row represents a cognitive logic
step, which is not the same as the actual problem-solving step. The last
row indicates the end of the process, that is, the completion of the

problem-solving process.
The results of the “mode” verbal inquiry analysis of WangC'’s pretest

are shown in Table 8.4. The left side of the table shows the verbal
report data recorded during the experiment. The right side shows the
cognitive process for oral report data and CMMPS analysis. The
diagnosis is based on a comparison between the cognitive process




analysis and the cognitive process (as shown in Table 8.3) of the “mode”
problem solving based on CMMPS.

Table 8.4 Oral report analysis of WangC's preclass results for the “mode” question

Oral English report

Cognitive process analysis

[Reading] Our class will hold a birthday celebration
next year, but only students whose birthdays are in
a certain month will be celebrated. If you are the
classroom teacher, which month would you choose?
Why?

[Analysis] I will celebrate a birthday for MaJw
[Q: Why?]
Because MaJW is my best friend

[Q: If you choose MaJW, which month would you
choose?]

March
[So, you think that March is a suitable selection?]
Suitable

[Q: This birthday celebration takes into account all
your classmates. Why March? Is it suitable?]

Because March covers the mostbirthdays
[Q: How do you know itis March?]

Other people told me

[Q: Who are “other people”?]

WangYF

[Q: What choice do you think is more appropriate?
The month of your best friend’s birthday or the
month that accounts for the birthdays of the most
students?]

The most
[Q: Why?]

Because I do not know which month is my friend’s
(which month their birthday is in)

[Q: Which month would you choose as your
decision?]

August

[Q: Why?]

Because there are many birthdays in August
[Q: How are you going to choose the month?]

Input text information by reading the
title, perform visual coding to form a

propositional text frame and question
patterns

(Give the answer directly)

The basis of the choice, which comes
from the content of the Production
module, is “select a friend’s birthday
month”

(Guide student to reflect on whether
their answer is appropriate)

(Emphasize the problem situation)

Switched strategy, Production
module content changed to “select
the month with the largest number of
birthdays”

(Guide student to identify problem-
solving strategies)

Determine the problem-solving
strategy, that is, the contents of the
Production module become “select
the month with the largest number of
birthdays”

Highlight the contradiction

(Inconsistent with the previously
identified problem-solving strategy)

(Say it to oneself)
(With computer)

(Previously used Baidu, conducted a
search)

Production module contents become
“a good friend’s birthday”

Solving the problem-solving strategy
again, the contents of the Production
module become “the month with the
largest number of birthdays”




Oral English report

CoghlirivePrigsisarglysis content

[Q: Alot of birthdays are in March, and a lot of
birthdays are in August. Which month would you
choose then?]

March

[Q: If you want to know which month covers the
most birthdays, how would you determine the
answer?]

Check on the computer
[Q: How would you check it?]
Baidu, enter what you want to check

[Q: Do you think Baidu can search for which month
has the most birthdays?]

Can’t

[Q: What do you want to do?]

Ask classmates

[Q: How many?]

Ask two

[Q: Why?]

Because if one does not know, you can ask another
[Q: What if neither of these two people knows?]
Ask someone else

[Q: Who?]

MaJW

[Q: In addition to celebrating the month of your best
friend’s birthday, for which other month do you
want to celebrate birthdays?]

March
[Q: Why?]

Because March (the 3rd month, the number 3) is
singular

[Q: There are a lot of other singular numbers, why
March?]

Singular represents boys

[Q: Which month do you want to choose then?]
March

[Q: Why?]

Because March is singular

[Q: There are many single months?]

of the Production module becomes
“select a friend’s birthday and the
month with the largest number of
birthdays”




Oral English report

Cognitive process analysis

Alittle bit

There are more people (with birthdays) in March
[Q: Do you think this problem is difficult?]

[Diagnosis] WangC students shows strong divergent thinking ability. He responded
quickly and came up with a variety of strategies and methods, but his problem-solving
strategy was not clear, and he did not provide a correct answer to the question

Note () in the content is for description and explanation

2.
Inquiry stage after class

The date of the after-school inquiry was December 13, 2011.
The CMMPS-based “mode” after-school inquiry problem-solving
cognitive process analysis is shown in Table 8.5.

Table 8.5 “Mode” inquiry question problem-solving cognitive process analysis

Visual |[Production Retrieval |Goal Imaginal |Manual
1 |[Text
encoding
2 Relevant
semantic
knowledge
in DM
3 How would |How
you choose |would you
the shoe choose the
size? shoe size?
4 Choose a shoe size,
assume the monitor role
— choose the shoe size
that the most students
wear (in line with
common sense)




Visual |[Production Retrieval |Goal Imaginal |Manual

5 Choose the

shoe size
that the
most
students
wear
(target
conversion)

6 Which shoe
size do the
most
students
wear, and
then choose
that shoe size

7 Which

shoe size
do most

students
wear

8 Statistics

for each
student’s
shoe size
9 Statistics,
counting

10 Compare

the number
of students
in the class
with each
shoe size

11 Comparison

of the sizes
of the
numbers
12 Choose the
shoe size of
the largest
number of

students




Visual |[Production Retrieval |Goal Imaginal |Manual

13 The shoe size
of the largest
number of
students

14 Finish

Each column shows the contents of a module at different times in
the problem-solving process. The leftmost column of numbers indicates
the row number. Each row represents a cognitive logic step, which is
not the same as the actual problem-solving step. The last row indicates
the end of the cognitive process, that is, the completion of the problem-
solving process.

Wang(C'’s after-class inquiry oral report is shown in Table 8.6. The
left side of the table shows the oral report data recorded during the
experiment. The right side is the cognitive process for the oral report
data and CMMPS analysis. The diagnosis results compares the cognitive
process analysis on the right side with the “mode” after-class inquiry
based on the CMMPS problem-solving cognitive process (as shown in
Table 8.5).

Table 8.6 Oral English report after analysis of the after-class “mode” inquiry by WangC

Oral English report Cognitive process analysis
[Read] A shoe factory is promoting a number of Input text information by reading the
new sports shoes. The shoe factory intends to title, and form a propositional text

provide free trials to our classmates. If you are the |frame and question patterns through
classroom teacher, how would you choose the shoe |visual coding
size?

[Analysis] I choose size 39 because my shoe sizeis | Determine the problem-solving
39. Choice No. 39 is suitable strategy, Production module content

[Q: Look at the question. Is this choice is “choose one’s own shoe size

appropriate?] (Guide student to understand the

Yes question)

[Q: If you were the classroom teacher, would this (Question meaning is not accurate)

choice be appropriate?] (Remind student of the “monitor”
role)

Inappropriate, I should choose the size more
people can wear Goal module content for the
“monitor” role, Production module
contents become “shoe size that is
worn by the most students”

[Q: So how do you know which shoe size is the most
popular?]




Oral English report

Veshivopgubesstznblfsiect a

By raising hands; it is easier to raise your hand

(Teacher gives the student a list of the shoe sizes of
the entire class)

[Q: Now you have data. What are you going to do?]

(counting the number of students with each shoe
size)

Choose 37 because 37 covers the most students.
There are eight; 38 and 39 are both 7, according to
my counting, and there are 2 people with size 40

[Q: Do you think your counting is right or wrong?]
Ithink I am right because I think I counted carefully
[Q: Did you count this quantity correctly?]

Yes, oh no, missed one. I thought there is no size 36.
I started from size 37. There are 4 in size 36

[Q: Which one is your choice?]

I choose size 37 because 37 covers the most people.
The factory could provide 8 pairs of shoes

[Q: Do you think this question is difficult?]
Alittle

[Q: Compared with the birthday question?]
This one

[Q: Why is that? It didn’t take long for you to figure
itout]

I thought for a moment

[Q: Do you think math is difficult?]

Not difficult, as long as you listen attentively
[Q: Are you good at math?]

Some things good, some things bad

method to collect data
“hands up”

Implementation strategy, Manual
module content: Number Operation
Manual module content: Select the
shoe size of the largest number of
students

(The student is reminded of the main
question tested in the problem-
solving process)

(Confidence in problem-solving
process)

Rethinking: Found errors after
checking

Determine the answer, Manual
module content: choose the shoe size
of the most students

Retrieval module: extract long-term
memory of the relevant knowledge

(May indicate past learning
inattention)

(Results are unstable, can be found
from the process of solving
problems)

[Diagnosis] In the process of solving the problem, WangC chose a strategy from the two
strategies. The student began to count the number of shoes, made an error, checked and
reviewed the process, and then correctly answered the question. These results show
that this student has not formed the habit of reviewing and checking their work

Note () in the content of the paper indicates a description and an

explanation

3

The first cognitive diagnosis and intervention




The first cognitive diagnostic intervention was conducted on

December 14, 2011.

The first cognitive diagnosis and intervention included two parts:
data statistics and strategy selection categories. The former was used to
diagnose and intervene in problems with statistics in the problem-
solving process; the latter was used to diagnose and intervene in
difficulties in the process of problem solving.

Table 8.7 shows the diagnostic interventions for the data statistics.
The left side of the form Shows the oral report data recorded during the
process, and the cognitive process for the oral report data obtained via

CMMPS analysis is on the right.

Table 8.7 First cognitive diagnosis intervention for WangC'’s “mode” inquiry oral report analysis

(data statistics)

Oral English report

Cognitive process analysis

[Title] All the students of Class 1 of Grade
5 have had the vision of their left eye
checked. The results are as follows:

Input text information by reading the title, and
perform visual coding to form a propositional
text frame and question patterns

The mode is 5.2”)

[Q: What do you understand the question
to be?]

What is the mode of this set of data?
(Immediately crosses out the original

answer. After a short period of counting,
writes out on paper: Mode is 5.1)

[Q: How many “5.1” are there?]
12

[Q: What about the others? How do you
know that 5.1 is the most frequently
occurring value?]

(Writes out on paper: 7 for 5.0, 4 for 4.9, 2
in5.3,4in5.2,3in4.7,4 0f4.8,12 0of 5.1, 2
0f4.5,20f4.6.12>7>4=4=4>3>2=2=
2)

[Analysis] (Starts writing on the paper: “A:

(Gives the answer directly. The title is not
complete.) Incomplete characterization of
visual module information

(Hint: look at the problem)
(After looking at the problem)

Understands the question correctly. Provides
the correct answer

(Guide the student to explain the process of
solving the problem.)

Production module content:

First, the number of different visual acuity
values, and then compare the sizes of the
numbers and select the value with the most
occurrences

[Diagnosis] WangC did notread the entire question and rushed into problem solving,
which led to the firstincorrect answer. The teacher simply reminded the student to read
the question again, and he quickly provided the correct answer

Note () in the content indicates a description




Wang(C'’s strategy selection class questions for the cognitive
diagnosis intervention oral report are shown in Table 8.8. The left side
shows the oral report data recorded during the experiment. The right
shows the cognitive process of the oral report data obtained via CMMPS

analysis.

Table 8.8 First cognitive diagnosis intervention of WangC’s “mode” inquiry oral report analysis

(strategy selection category)

Oral English report

Cognitive process analysis

[Read] The school has decided to organize a group
tour during spring break, and there is only one place
we can choose from the following: A Beijing
Tiananmen Square; B Baiyangdian; C Mountain Tai

If you are the principal, how would you choose the
place?

Input text information by reading
the title, and perform visual
coding to form a propositional
text frame and question patterns

[Analysis]

[Question]: If you are the student representative, how
would you choose?

I would choose Baiyangdian
[Q: Why?]

Because people can go fishing at Baiyangdian, and itis
my favorite place

[Q: Please read the lastline of the question.]

I will choose the place most classmates in our class
want to go

[Q: Which one would you choose as the final
destination then?]

If I am the student representative, I will listen to my
classmates; for myself, I will choose Baiyangdian

[Q: Which one would you choose as the final
destination then?]

Listen to my classmates
[Q: How did you start to think of Baiyangdian?]
Because I thoughtI was nota monitor

Features: The student started to answer the question
without thoroughly understanding what the question
is asking. Once the question was understood, the
student immediately answered correctly

(Reads the title again)

Gives the problem-solving
strategy, and the Production
module content: “choose my
favorite place to go”

(Provides hint to student)

Understands the question,
determines the strategy, that
Production module content:

“choose where the most students
want to go”

Strategy Selection, Production
module content:

Different strategies for different
roles

Determine strategy, Production
module content: “choose the
place where most students want
to go”

(Diagnosis of the wrong reasons
due to a target set error)

Goal: incorrect role play




Oral English report Cognitive process analysis

[Diagnosis] WangC answered the question too quickly and did not thoroughly
understand the problem situation (role) before solving the problem. After rereading
the question and correctly recognize the assigned role, the student chose the correct
strategy to answer the question

Note () in the content indicates a description

4,
The second cognitive diagnosis intervention

The second cognitive diagnosis intervention was conducted on
December 15, 2011.

The second cognitive diagnosis intervention also included two
parts: data statistics and strategy selection. The former was used to
diagnose problems in the statistical process and provide an
intervention; the latter was used to diagnose strategy selection
problems and provide an intervention.

Table 8.9 shows the diagnostic intervention experienced by WangC.
The left side of the table shows the oral report data recorded during the
experiment. The right side is the cognitive process analysis obtained
from the CMMPS analysis of the oral report data.

Table 8.9 The second cognitive diagnosis intervention for WangC'’s “mode” inquiry oral report
analysis (data statistics)

Oral English report Cognitive process analysis

[Read] A shooting team plans to selectone of two | Input text information by reading the
athletes to attend a competition. The two athletes |title, and perform visual coding to form
each hit 10 rounds of ammunition. The results are |a propositional text frame and question
as follows: patterns

A:9.5109.39.59.49.59.29.5
B:109108.39.89.5109.88.79.9

(1) What are the average and mode of the results of
A and B?

(2) Who do you think is more suitable to attend the
competition? Why?




Oral English report Cognitive process analysis

[Analysis] Calculate the average, mode (Correct understanding of the
(Quickly wrote on paper) A: problem)
(9.5+10+9.3+9.5+9.6+9.5+9.4+9.5+9.2 + (Output problem-solving process)
9.5)/10 Manual module content

=95/10 (Correct calculation)

=9.5 (Output problem-solving process)
A: The average is 9.5, and A: The mode is 9.5 (Correct calculation)

B:(10+9+10+83+98+95+10+98+87+9 Manual module content

9)/10 (Thought through fully)
=95/10

=9.5
A: The average is 9.5, and A: The mode is 10

A:1think A should attend because (A and B have
the same average) shot higher than 9 in each
attempt

[Diagnosis] WangC calculated the answer accurately and solved the question quickly.
The student chose the candidate logically when conducting the solving process, and the
student’s understanding was comprehensive

Note () in the content indicates a description

The oral report data of WangC’s strategy selection questions for the
cognitive diagnosis intervention are shown in Table 8.10. The left side
of the table shows the oral report data recorded during the experiment.
The right side is the cognitive process analysis obtained from the
CMMPS analysis of the oral report data.

Table 8.10 Second cognitive diagnosis interventions for WangC oral report analysis (strategy
selection category)

Oral English report Cognitive process analysis




Oral English report

Cognitive process analysis

[Reading] The school plans to hold a New Year’s
Day party. Each class can perform only one
program, but there are three candidate programs

Input text information by reading the
title, and perform visual coding to form
a propositional text frame and question

in our class: patterns
(1) Xiaoming solo “where is spring?”
(2) Xiaohong solo dance “we are the flower buds”

(3) Xiaolan poetry recitation “facing the sea,
spring flowers”

If you are the classroom teacher, to ensure
fairness, what would you do?

[Analysis] Correct understanding of “class teacher

1 will choose the song most classmates like role’, Goal module content

Determine the problem-solving strategy,

[Q: How do you know which one your classmates X ’ )
Production module: “selected students

like?] ¢ - |
avorite son
Ask classmates ) . g .
) Given statistical strategy, Production
[Q: How many students?] module: “ask students”
28

(Hint: ask which classmates)

[Q: After you ask, which one would you choose?] Production module: ask the classmates

Which is the most, which one you choose (including myself)

(Hint: ask students, the next step how to
do)

Production module: data statistics,
selection of the choice of the most
students

[Diagnosis] WangC changed his previous habit of notreading the topic before
attempting the problem. The student’s problem-solving ideas are clear, and the
problem-solving method is appropriate

Note () in the content indicates a description

5.
Comparative analysis of different stages of the problem-solving

process

For the purpose of comparison, Table 8.11 presents the changes in
the solving process in the four stages of preschool inquiry, after-school
inquiry, first cognitive diagnosis intervention and second cognitive
diagnosis intervention.

Table 8.11 Changes in WangeC’s cognitive nrocess at different stages of the exneriment



o o o 1 o 1

Stage Problem-solving process characteristics

Before class Problem-solving strategy was not clear, the idea was not clear, and
(December 12) there was no correct answer to the question

Study after class The student chose from one of two strategies, started counting the
(December 13) number of shoes when there was an error, reviewed the strategy after

the correction, and finally, provided a correct answer. The student did
not display the habit of reviewing his work

The first Data The student did not finish reading the question. He was so eager to
intervention | collection | solve the question, which led to a problem-solving error. After a

(December question |simple reminder, he read the question again, quickly understood the
14) questions, and quickly solved the questions correctly
Strategy | The student answered the questions quickly without understanding
selection |the problem-solving strategy, which led to an error. After looking at
questions |the question again and recognizing the assigned role, he chose the
correct strategy to answer the question
The second |Data Calculated accurately, answered questions quickly, considered the

intervention | collection | candidates comprehensively, demonstrated comprehensive thinking,

(December question |provided correct answer to the question

15) Strategy | The student changed his previous habit of starting to solve problems
selection |before understanding the question. After obtaining a correct
questions | understanding, the student’s problem-solving ideas were clear, the
method was correct, and the problem was solved correctly

As seen from the comparative analysis of Table 8.11, the significant
changes in WangC’s problem-solving process before and after the
interventions helped him answer the questions correctly and develop
an effective way of solving problems.

After the experiment, WangC received a score of 94 points on the
teacher-organized test. The subjects of the test questions were from
“elementary mathematics grade five (People’s Education Press)” and
concerned the “juvenile intelligence development” 16 issue. The analysis
of the papers revealed that WangC had no problem with the calculation;
the loss of points was due to carelessness. By checking and reviewing
his work, he can demonstrate clear progress.

6.
Teacher Interview

With respect to Wang(C'’s usual learning behavior, we interviewed
his mathematics teacher, Ms. Duan Junxiang, and she reflected as
follows:



(1)

WangC is very smart, outgoing, confident and active. However,
poor language processing and reading skills affect mathematical
understanding. In the junior grades, the student did not pay much
attention to his language or reading skill development. His
understanding of some questions on the application is poor, which
leads to errors. As long as a question is discussed in class, he has
no problem understanding the question and provides a solution,
but errors may sometimes result from carelessness.
2

) WangC solves questions very quickly. His solution speed might put
him in the top 2 in his class. Because he lacks a habit of checking,
his error rate is higher than average.

The teacher’s reflections on WangC confirm what we previously
reported in verbal reports.

(=) Birthday data collection and statistical strategies in the process
of problem solving

Data collection is required for solving the “mode” problem. When
solving real problems, the data are not readily available and need to be
collected and counted. Previous data analysis has shown that many
students (e.g., DuanYC, DuanZX) have problems with data statistics,
which leads to problem-solving errors. Data processing for the mode
includes collecting the number of birthdays each month and
determining the month with the highest number of birthdays after
computing the statistics. Figure 8.3 further reveals the image, data
collection, statistical methods, and preparation of the ACT-R simulation
program.

Fig. 8.3 Data collection process simulation



The figure shows the number of people with birthdays in May
(denoted by M), that is, the number of M’s. The strategy adopted is to
count the number of M’s in the first row, then the number of M’s in the
second row, and finally the number of M’s in the third row. The output
is 5, which means that “the number of students whose birthday month
is May is 5”. Figure 8.4 visualizes this data collection process, with the
red circles denoting the final numbers. The visualization of this strategy
helps students address the “impossible” challenge of facing the data. Of
course, students can also choose a strategy according to their
preference, with just one of the options mentioned above.

Fig. 8.4 Data collection process visualization

To calculate the correct statistics of the month with the largest
number of birthdays, the required declarative knowledge is shown in
Table 8.12.

Table 8.12 Descriptive knowledge required for
the month with the highest number of birthdays

(p1 ISA count-order first 1 second 2)

(p2 ISA count-order first 2 second 3)

(p3 ISA count-order first 3 second 4)

(p4 ISA count-order first 4 second 5)

(p5 ISA count-order first 5 second 6)

(p6 ISA count-order first 6 second 7)

(p7 ISA count-order first 8 second 9)

(p8 ISA count-order first 9 second 10)

(p9 ISA count-order first 10 second 11)
(p10 ISA count-order first 11 second 12)




Table 8.12 presents 10 ordinal pairs in total, where p1 indicates a
pair of ordinal numbers (1, 2), p2 indicates the ordinal pair (2, 3), and
so on. These ordinal pairs are used to compare the sizes of two
numbers. For adults, the size of the number of comparisons has become
automated. If students do not understand these pairs, they will make
mistakes in comparing the numbers; that is, they will not be able to
correctly select the month with the largest number of birthdays.

The number of birthdays in each month is 3 in January, 2 in
February, 4 in March, 3 in April, 3 in April, 6 in May, 4 in June, 2 in July, 3
in August, 2 in September, 4 in October, 4 in November and 5 in
December. Figure 8.5 shows the statistical simulation of the month with
the largest number of birthdays. The result is May.

Fig. 8.5 Cognitive simulation of the month with the largest number of birthdays (part)

8.2.4 Discussion
(—) Students’ problem-solving stage is not clear

In the process of teaching, teachers focus only on the content,
enabling students to accept, understand, and master the content, but do
not thoroughly consider the problem-solving process and stage. Good
students in the process of solving problems may be identified in terms
of problem-solving steps. Students who have a general or a poor grade
only accept the knowledge provided by the teacher. When new
problems are solved, these students tend to recall old problems instead
of analyzing new ones, often resulting in “no help at all”. Helping
students form a good approach to solving problems is the key to
resolving their difficulties.

(=) Students’ understanding of a question is incomplete, which is
the most common problem in the process of solving problems.



The above data analysis revealed that 21.4% of the students
participated in the after-school research phase, and 14.8% of the
students did not understand the meaning. An analysis of the results of
Question 18 (Table 8.13) revealed that 15 (53.6%) students made
errors because their understanding of the problem was unclear.
Specifically, 5, 8, and 2 middle and poor students understood the
problem. In Table 8.13, “1” means “do not understand the problem”; “2”
means “understand the problem but do not know which method to use
to solve the problem”; “3” means “prone to make a calculation error”;
and “4” means “no habit of checking the result”.

Table 8.13 Average results * difficulties
encountered in solving mathematical problems

Question 17 Total

1 (2 (3 |4
Usual grades 1(5 (2|6 |1 (14
218 |3 |11 |3 |25
312 |4 1|5 |0 |11
Total 15 |9 (22 |4 |50

Interviews with the teacher also highlighted that the failure to
understand the problem is a common problem in the process of solving
problems. De Smedt’s experiments involving 4th and 5th grade
students found that the level of children’s speech representation
affected their extraction of arithmetic knowledge. In addition, the more
significant the characterization was, the faster the extraction rate was
(De Smedt et al.,, 2006). This study demonstrated that speech
understanding plays a role in problem solving. After receiving simple
tips for completing the main test, most students can understand the
questions and correctly answer them.

(=) Students’ lack of concentration is an important factor leading to
an incomplete understanding of the topic.

In oral reporting experiments, researchers have reported that most
students who have misinterpreted problems behave unfocusedly.
Students demonstrate several problems in the process of solving



problems. This phenomenon was detected later in the process of
observing the experimental video. In interviews with the instructor, the
teachers noted that these students, who are not attentive in problem
solving, also look around and are constantly moving in class. This
behavior is observed not only in math but also in Chinese and science
classes. These students have developed inattentive habits, and teachers
should design activities to help them develop a habit of focusing on
learning.

(V1) Poor language performance is an important factors leading to
incomplete understanding.

Interviews with some Chinese teachers indicated that some
students who did not solve the problem after the successful diagnosis
also had poor Chinese scores (with a few exceptions). Poor results in
Chinese can lead to an unclear understanding of the questions. It is
difficult to form the correct representation of questions in the thinking
process. Thus, an incorrect representation of the question is the main
reason for the incorrect answers. Anand and Ross (1987) also reported
that the main reason for the incorrect answer to a question was the
misrepresentation of the question’s structure, not the computational
difficulty. Fu and He (1995) and Shi (1985) have also illustrated this
point.

(11) Personal experience, family life and other background
knowledge in problem solving

In the topic design part, the topic of “selecting dance partners” of
the knowledge point of the PEP was analyzed. This topic was easy to
understand for the students who had dancing experience. However,
according to the instructor, most rural students have no dancing
experience. The “selection of dance partner” problem was thus not easy
to understand. In contrast, the vast majority of the students had
“birthday” experience, with “birthday” situation knowledge conducive
to understanding the subject. Verschaffel and De Corte (1997) also
emphasized the importance of background knowledge to the
application of solutions. They reported that when students solve an
application problem, ignoring the real situation was not only common
but also quite serious.



(75) Students solved the problem in a “nonlinear” way

There are different divisions of the stages of problem solving, but
most of them describe a “linear” process that is highly rational and
ideal. However, during the experiment, we found that the students did
not go through all the stages of problem solving when actually solving
the problem. A feedback loop is created, which is related to the
development of personal habits for solving problems. In the process of
solving a problem, some students look at the topic and then read the
question, while others read the question first. Then, some students
(including students with good academic performance, such as DuanYC
and WangC) have no problem with the checking stage. On the one hand,
this finding revealed the differences among the students in terms of
problem-solving methods and strategies; on the other hand, it also
provided a basis for the analysis of problem-solving errors.

8.3 Empirical Study on the “One-on-One”
Cognitive Diagnosis of Programmatic

Knowledge
8.3.1 Purpose

The “cylindrical flank area” is a part of the “cylinder and cone”
knowledge taught in elementary school in the sixth grade (two
volumes) textbook, Unit 2. It is an example of typical procedural
knowledge in elementary school mathematics. The purpose of the
experiment is to carry out “one-on-one” cognitive diagnosis and
intervention for students whose procedural knowledge problem
solving is difficult and analyze and compare changes before and after
the intervention.

8.3.2 Methods
(—) The subjects

Fifty students from grade six of the Yong Liang Primary School in
Gaoyang County, Hebei Province, were selected as subjects. Among
them, 26 students were boys and 24 students were girls, with an



average age of 145 months, and their ages ranged between 135 and
187 months. The proportions of males and females were basically
balanced.

(=) Materials

The sixth-grade “cylindrical side area” application question is
selected. This question represents typical procedural knowledge. This
knowledge point is new for students, but the prior knowledge they
need has already been learned. The “cylindrical flank area” application
questions address the situation of “wrapping paper”. The students are
asked to perform hands-on operations and find the solution to the
problem. For example, the “flank” can be expanded to convert the
problem into a rectangular area and diagnose the problem such that the
student appears in the process of solving the problem.

The test material is a test subject specially designed on the basis of
the purpose of this study. The specific materials used are as follows:

1.
Preknowledge test questions

1
() The length of the basketball court is 28 m, and the width is
15 m. How many square meters is the court? How many
square meters constitute the area of half the basketball court?
2
) A rectangular vegetable garden has a long side by the wall; it
is 20 m long, and 40 m are needed to fence the garden. What
is the area of this vegetable garden?
3
B) A round fish pond has a diameter of 4 m. What is its area in
square meters?
(#) . . .
There is a sheep tied to a pile of wood on the grass. The length
of the rope is 4 m. How many square meters of grass can
sheep eat at most?

Oral report training problem

The oral report training exercises are shown in Fig. 8.6.
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Fig. 8.6 Oral report training problem

3.
Inquiry questions before class

A potato chip factory produces a batch of potato chips that need to
be packaged on the side of the potato chip box (as shown in Fig. 8.7).
Can you help the factory calculate at least how many wrappers are
needed for each chip box?

Fig. 8.7 Chip box

4. After-school knowledge test questions

(1)
Which of the graphics in Fig. 8.8 is a cylinder? Please mark it.

Fig. 8.8 After-school knowledge test question 1

(2)

The bottom, flank, and height of the cylinder are shown in
Fig. 8.9.

&

Fig. 8.9 After-school knowledge test question 2

(3) A cylindrical tea box with a diameter of 5 cm and a height of
10 cm was used. Please calculate the side area of the tea box.



(4)
A roller brush (shown in Fig. 8.10) is used to paint the wall;

the roller brush has a radius of 6 cm and a length of 30 cm. If
you dip the paint once, the roller can roll 4 turns. How many
square centimeters of the wall can be brushed?

Fig. 8.10 Roller brush

5.
After-school inquiry questions

A cylinder is created after cutting a piece (as shown in Fig. 8.11).
Can you calculate its side area? Note that h=10 cm and r=4 cm.

Fig. 8.11 Cylinder

(=) Program

1.
Design the experimental program

Determine the purpose, experimental subjects, materials, and
instructions. Make overall arrangements regarding the aspects of the
experiment and the predicted results.

2.
Experimental equipment

A single recording pen, a Sony camera, and a tripod were used to
record the oral reports of the subject during the experiment.



3. Oral reporting and recording

The oral reporting method was used to collect information. In
accordance with the research methods developed by Erickson and
Simon, the subjects were trained to think aloud in the process of solving
the problem. Before the main question was presented, the main tester
(the researcher himself) explained the requirements of the instruction.
Then, the main tester used oral training questions as an example and
demonstrated and explained how to think aloud in the process of
answering the questions. After the subjects learned how to think aloud,
they began to solve the question and were recorded via video during
the process.

4.
Data translation and coding

The data collected include the two parts of the oral report and
problem-solving operations. The oral report is first translated into the
text by the experts, and then the students’ problem-solving
assignments are encoded and analyzed to diagnose learning difficulties.
Two experts were responsible for coding work, and agreement was
reached after discussion of a small number of coding inconsistencies.

5.
Development of an intervention program

The oral report data and videos collected during problem solving
can be used to analyze students’ ideas and obstacles in the process of
problem solving and to develop specific intervention programs, such as
which tips can help students solve problems and improve the learning
effect.

6.
Interview

The interviews with the teacher focused on the obstacles that arose
in the students’ problem-solving process. In addition, the students’
usual performance could be fully understood, and the intervention
program could be refined.



7. Intervention

In the process of problem solving, timely feedback should be
provided according to the student’s oral report. To observe and record
students’ reactions, students should be given enough time.

8.
Effect test

Through the design of the topic, we evaluated the students’ mastery
of the knowledge.

(PU) Experiment duration

The experiment was conducted from December 17, 2011, to
December 22, 2011.

8.3.3 Results Analysis

During the experiment, the knowledge of 50 students in Grade 6
regarding the cylinder side area was tested. Forty-eight students
participated in the oral report experiment of the preclass inquiry
questions, and 47 students participated in the oral report experiment
of the after-class inquiry questions. Forty-six students participated in
the first cognitive diagnostic intervention, and 5 students participated
in the second cognitive diagnostic intervention. A total of 146 students
participated in the oral report experiments.

(—) The overall effect of “one-on-one” cognitive diagnosis
Preknowledge test results analysis

The statistics of the “cylindrical flank area” preknowledge test
results are shown in Table 8.14.

Table 8.14 “Cylindrical side area” preknowledge test results

The first |The second |The third |The fourth
question |question question |question

The number of students who 47 44 44 40
solved the problem correctly

Accuracy rate 94 88 88 80




An analysis of the students’ papers revealed that the first objective
was to directly examine the calculation of the rectangular area. Three
students provided the incorrect answer, one student forgot to complete
the second question, one person used the incorrect unit for the area,
and one student made a calculation error. Question 2 was an indirect
question on the area of a rectangle. Six students provided the incorrect
answer because they did not understand the problem. Question 3
examined the area of the circle. Six students answered the question
incorrectly, five of them did not understand the problem, and one
person calculated the diameter as the radius. The six students who
made a mistake on the second question also made an error when they
answered the third question. Question 4 was related to the actual
problems of life. Ten students answered it incorrectly. Six of them did
not understand the problem, three performed the calculation
incorrectly, and one of them calculated the radius as the diameter. Two
students incorrectly answered all four pretest questions, accounting for
4% of the sample. The test results indicate that students have mastered
the preknowledge for calculating the “cylindrical flank area” of. The
preknowledge test error conditions are shown in Table 8.15.

Table 8.15 Preknowledge test error condition analysis

The first The second The third The fourth

question question question question
Do notunderstand the 6 students 5 students 6 students
problem (100%) (83.3%) (60%)
Mathematical formula 1 student 1 student 1 student
mastery is not strong (33.3%) (16.7%) (10%)
Calculation error 1 student 3 students

(33.3%) (30%)
Carelessness 1 student

(33.3%)
Total 3 students 6 students 6 students 10 students

With respect to students’ usual grades, even though two students
usually received good grades, they made mistakes on Question 4, in
which 1 did not understand the meaning of the question and 1
miscalculated the answer. Only one student who typically receives




medium grades made an error in solving Question 4 due to a
miscalculation. Most of the students who had poor results usually
represented the majority of students who demonstrated difficulties
solving the problem. According to the statistical results of previous
knowledge testing, the students who were in the middle of the class in
terms of grades performed slightly better than the top students did.

2.
Analysis of the results of the preclass exploration stage

An analysis of the preclass research stage of 48 students’ oral report
data revealed that 16 students correctly answered questions,
accounting for 33.3% of the sample; 13 students had clear problem-
solving ideas, but their operation was incorrect, accounting for 27.1%
of the sample; 4 students could not answer the question at first, but
after a physical operation, they sought to calculate the area of a
rectangle, accounting for 8.3% of the sample; 14 students did not know
the meaning of the question, accounting for 29.2% of the sample; and 1
student did not have strategies after reading the question, accounting
for 2.1% of the sample. The results are shown in Table 8.16.

Table 8.16 “Mode of measurement area” preclass research results

The results of preclass research Number of Proportion of
students sample

Correctanswer 16 33.3

Clear thinking, mistakes in operation 13 27.1

Cannot answer the question at first, able to do after the |4 8.3

physical operation

Misunderstand the meaning of the question 14 29.2

No problem-solving strategy 1 2.1

Total 48 100

The classification of errors shows that unclear understanding was
the main reason leading to problem-solving errors, followed by
problem-solving operations and the lack of a problem-solving strategy;,
which accounted for only a small proportion of the errors. Moreover,
the physical operation helped the students solve the problem. The



above statistical results can provide targeted help for the design of
classroom teaching.

3.
Analysis of the results of after-school research

The after-school inquiry questions were more difficult than the
preclass inquiry questions were, as they examine students’
understanding of the side area of a cylinder. A total of 47 students
participated in the after-hour inquiry oral test report, and the statistical
results are shown in Table 8.17. Three students answered the question
correctly, accounting for 6.4% of the sample. Three of them adopted the
remaining length of the circumference x height, the area of the side of
the cylinder—the area of the side of the cylinder x 1/6 + two
rectangular areas, and the three methods of bisecting the cylinder.
Three students demonstrated a correct understanding of the concepts
but incorrect calculations, accounting for 6.4% of the sample; 10
students demonstrated correct problem-solving ideas but were not able
to calculate the cutoff area, accounting for 21.3% of the sample; 30 did
not understand the meaning of the side area, accounting for 63.8% of
the sample; and 1 student did not have a strategy after reading the
question, accounting for 2.1% of the sample.

Table 8.17 “Cylindrical side area” statistics of the study results

Correct | Clear Cannot answer the Misunderstand | No
answer | thinking, question atfirst, able to |the meaning of |problem-
mistakes in |do after the physical the question solving
operation |operation idea
Excellent |2 2 4 9
Middle 1 1 2 13
Poor 4 8 1
Total 3 3 10 30 1
Proportion | 6.4 6.4 63.8 2.1

From the statistical results, the main reason leading to mistakes in
solving problems was “do not understand which part of the side area is
included”; that is, the concept of the side area was not thoroughly
understood. The number of excellent, middle, and poor students each



accounted for approximately one-third of the sample. For effective

interventions, these students’ oral reports were analyzed in depth, and

the types of errors were classified, as shown in Table 8.18.

Table 8.18 “Do not understand side” wrong type classification

Missing two Miss the cutoff | Calculate the Calculate the
rectangles part entire side cutoff part
Excellent |7 2
Middle 10 2 1
Poor 15 2 1
Total 22 4 3 1
Proportion | 73.3 13.3 10 34

As shown in the data analysis in Table 8.18, the main reason for
mistakes was “missing two rectangles”, accounting for 73.3% of the
sample, and the middle students accounted for nearly half. The reason
why students “miss two rectangles” was that they did not understand
the side area of the irregular graph. The use of a physical display during
the intervention phase and the students’ hands-on methods allowed the
students to intuitively feel how to transform the irregular graph into a
regular graph. Then, the learned side area knowledge can be used to
solve the problem.

4,
Analysis of the first intervention results

An analysis of the after-class inquiry oral report information
revealed that the main reason for mistakes was “missing two
rectangles”. In combination with examples of preclass research, such as
“paper wrapping”, which provides students with irregular patterns to
explore, teachers provide a few tips and recall the students’ problem-
solving process. A total of 46 students’ intervention results are shown
in Table 8.19.

Table 8.19 “Cylindrical side area” results of the first intervention



Correct | The ideais correct,but |Do notunderstand No problem-
answer |there is a calculation which part of the side is |solving
error covered strategy
Excellent |17 2
Middle 12 1 1
Poor 5 2 5 2
Total 34 3 8 2
proportion | 73.9 6.5 17.4 2.2

The intervention results revealed that 73.9% of the students
correctly answered the question, with excellent and middle students
accounting for the vast majority. Eight students, including two top
students, did not understand the concept of the side area. This finding
shows that the two top students applied their knowledge to solve
simple problems better but did not perform well when faced with
complicated issues or when they were required to transfer their
knowledge. Students who did not have a solution to the problem in
after-class study had no solution to the problem after the intervention,
and the effect was not significant.

For the 34 people who answered the question correctly, different
approaches were used. The results are shown in Table 8.20.

Table 8.20 Different strategies to obtain the correct answer to the
“cylindrical side area” in the first intervention

Strategy A | Strategy B | Strategy B + Strategy C | Strategy C
Excellent |9 3 3 2
Middle 10 1 1
Poor 5
Total 24 4 4 2
Proportion | 70.6 11.8 11.8 5.8

Strategy A: cylinder side area x 5/6 + 2 rectangular area; strategy B:
expansion is rectangular, long x wide; strategy C: the circumference of
the underside of the residual circle is x high + 2 rectangular areas;
strategy A + strategy B represents two approaches. The statistical
results revealed that the majority of students adopted strategy A,



accounting for 70.6% of the sample; among the students who used
strategy B and strategy C, the top students had advantages, which
meant that their mathematical thinking was more flexible when solving
the problem.

5.
Analysis of the results of the second intervention

The five students who did not understand the concept of the side
after the first intervention were selected on the basis of the oral report
data to diagnose the problem-solving process and perform the second
intervention. Of the 5 students, 2 were excellent, 1 was in the middle,
and 2 were poor. All the answers were correct. Table 8.21 lists the
strategies used to generate the solution.

Table 8.21 Different strategies to obtain the
correct answer to the “cylindrical side area” in
the second intervention

Strategy A Strategy B
Excellent 1 1
Middle 1
Poor 2
Total 4 1
Proportion 80 20

Strategy A: Cylindrical side area x 5/6 + 2 rectangular areas;
strategy B: Circumference of remaining round bottom x height + 2
rectangular areas. The results revealed that 4 of the 5 students used the
general method, strategy A; only 1 student used the problem-solving
strategy of converting irregular graphics into regular graphics.

The above analysis revealed that the side area of the regular graph
is easy for students to understand, which makes it difficult for students
to understand the side area of the irregular graph. The key to an
effective intervention is how to help students understand this concept.

With respect to the side area of the regular graphics, practice
showed that the use of a physical display method and the
transformation of irregular graphics into regular graphics was a good



strategy after the conversion was completed, and the calculation was
not difficult for the students.

(=) Changes in the cognitive process before and after the
intervention are used to analyze changes in the student RanA as an
example in various stages of problem solving and the cognitive
process.

1.
Knowledge of test question analysis

RanA been revised and correctly answered all four questions on the
knowledge test, indicating that this student mastered the concepts of
the area of the rectangle and the area calculation method.

2.
Preclass exploration stage

The study was conducted on December 17, 2011.
The CMMPS-based “cylindrical side area” was used to obtain the
cognitive process, as shown in Table 8.22.

Table 8.22 CMMPS-based analysis of the “cylindrical side area”

Visual Production Retrieval Goal Imagine |Manual
1 |Visual
coding
2 Relevant
semantic
knowledge in
long-term
declarative
memory
3 Atleast |Atleast
how how much
much wrapping
wrapping | paper is
paperis |needed?
needed?




Visual Production Retrieval Goal Imagine |Manual
4 |[Codingat
least how
much
wrapping
paper is
needed?
5 At least how much
wrapping paper do
you need? = look
for the side area of
the cylinder
6 Seek the
cylindrical
side area
7 |Code
“cylindrical
side area”
8 Calculate the area
of the cylindrical
side — calculate
the area of the
rectangle
9 Calculate
the area of
the
rectangle
10 Area of the
rectangle
11 Seek the area of
the rectangle —
2mr x h
12 The length
of the
rectangle
13 Seek the length of
the rectangle —
measure the length
of the ruler
14 Measure the length

of the rectangle




Visual Production Retrieval Goal Imagine |Manual

15 The width
of the
rectangle

16 Find the width of

the rectangle —»
use a ruler to
widen it

17 Measure the width
of the rectangle

18 Seek the area of
the rectangle —»
length x width

19 The area of the
rectangle is length*
wide

20 The area of the
packing paper is the

area of a rectangle,
that is, the length
and width of the

paper
21 End

In the process of solving the problem, two strategies are used to find
the length and width of the rectangle: (1) the flank is directly expanded
into a rectangle, and the length and width of the ruler are measured; (2)
according to the formula of the circumference, the length of the
rectangle is the circumference of the bottom circle, the width is the
height of the cylinder, and the area is the circumference of the bottom
circle, x, is high, that is, 2mrxh. Each column in Table 8.22 represent the
content of a module at different times in the problem-solving process,
and the leftmost column number represents the line number. Each line
represents a cognitive logic step, which is not completely consistent
with the actual problem-solving step, and the last line represents the
end of the cognitive process, that is, the end of the problem-solving
process. RanA’s preclass oral report information on the “cylindrical
flank area” is shown in Table 8.23. The left side is the oral report data
recorded during the experiment, and the right side is the cognitive
process, which is based on the CMMPS analysis of the oral report data.



The diagnosis result is the analysis of the cognitive process based on
the CMMPS analysis (as shown in Table 8.22), and a comparison is

made with the oral report data.

Table 8.23 Analysis of the preclass oral report data of RanA on the “cylindrical flank area”

Oral report

Cognitive process analysis

[Read the title] A factory intends to manufacture a
batch of chips (Fig. 8.7) that need to be packaged in
the box on the side of the potato chip box. Can you
help the factory calculate the number of wrapping
papers needed for each box?

The text information is input through
the reading list, and the propositional
text frame and the question pattern
are formed through visual coding

[Analysis] Use a piece of paper. Measure the paper
to find the length and width and calculate the area
by length x width

(The primary test gives the studenta chip can, an
A4 sheet, ruler and scissors)

(Student performs a hands-on operation)

Take a paper box, and mark the position just on the
perimeter. Use a straightline to cut off the extra
part of the length; calculate the length and width of
the paper

(written on paper)

21x21.5 m441.5 (square centimeter)

Answer: 441.5 square centimeters are needed

[Q: Can the wrapper wrap the chip box?] (Students
performs hands-on operation)

Paper wraps the box, finds that the paper is higher
than the height. Marks the box height with a ruler
line to indicate what will be part of the packaging
paper and to cut off the excess height. The length
and width of the paper are calculated:

(written on paper)

21.5x14.2 =305.3 (square centimeter)
Answer: 441.5 square centimeters are needed
The same: Say what you're thinking

The first step is obtaining the paper packaging box.
The second step is determining the box length and
width. The third step is calculating the length x
width to find the area for this piece of paper

(Inspired to understand, explains the
problem-solving strategy,
demonstrates clear thinking)

(in accordance with the hands-on
problem-solving strategies)

(box length to meet the requirements,
forgets that the paper height should be
consistent and column side)

Production rules: P1 Seeking
cylindrical side area — Seeking the
area of arectangle, P2 Seek the area of
arectangle = length*width, P3
length*width, measure the length and
width

Manual: length, forgets the habit of
examination and reflection in the
process of solving the problem

(after a simple prompt, encounters a
difficulty with solving the problem)

(Hands-on operation, student corrects
the mistake by themselves)

Manual: does not measure the length
and width, writes the answer

Correct calculation

Retrieval: to change the length in
program memory, the production type
is automated to calculate the sum

(Student’s own summary)




Oral report Cognitive process analysis

[Diagnosis] RanA demonstrated clear problem-solving ideas and skilled operation but
did not have the habit of checking the answer after the problem-solving process. The
first time, she forgot the height of the chip can, and after being prompted to check after
the discovery of the error, she corrected the problem-solving process

Note the content of () is a part of the description

3.
After-school exploration stage

The after-school study was conducted on December 20, 2011.
The process of solving the “cylindrical side area” after-school
inquiry problem based on CMMPS is shown in Table 8.24.

Table 8.24 Analysis of the cognitive process of the “cylindrical side area” after class

Visual Production Retrieval Goal |Imagine Manual
1 (Visual
coding
2 Related semantic
knowledge in
long-term
declarative
memory
3 The |The side area of
side |it?
area
of it?
4 |[Code “the
side area of
it?”
5 What is the side area
of it? = which parts
are included in the
side area?
6 Which parts are
included in the
side area?




Visual Production Retrieval Goal | Imagine Manual
7 |Code “cut
one piece of
cylinder
side area”
8 Side area — cylinder
side area—cut area +
two rectangular
areas
9 Cylinder side
area—cut area
+two
rectangular
areas
10 Find the side
area of the
cylinder
11 The side area of
the cylinder
12 Find the side area of
the cylinder — 2mr*h
13 The side
area of the
cylinder is
2mrh
14 Cut area
15 Cut area
16 How much to cut the
area — cylindrical
sideareax 1/6
17 The area
cutis
2nrhx1/6
18 2 rectangular
areas
19 Rectangular area -
hxr
20 The area
of two
rectangles

is2xhxr




Visual Production Retrieval Goal | Imagine Manual

21 Side area —
cylindrical side area
—cut area + two

rectangular areas
22 2mrh—
2mrh x
1/6+2 %
hxr
23 End

Table 8.24 presents a solution strategy in which each column
represents the content of a module at different times in the problem-
solving process. The leftmost column number represents the line
number, and each row represents the cognitive logic step, which is not
the same as the actual problem-solving process. The last line indicates
the end of the cognitive process, that is, the end of the problem-solving
process. RanA participated in the after-class oral report, as shown in
Table 8.25. The left side of the table is the oral report data recorded
during the experiment, and the right side is the cognitive process
analysis of the oral report data, which was obtained via CMMPS
analysis. The goal of the diagnosis is to divide the cognitive process on
the right side of the analysis and compare it with the CMMPS-based
problem-solving cognitive process (as shown in Table 8.24).

Table 8.25 Analysis of after-class oral english report data of RanA classmate for “cylindrical side
area”

Oral report Cognitive process analysis

[Read] There is a cylinder, after cutting a Enter the text information by reading the title,
piece, as shown in Fig. 8.11. Can you find its |and perform visual coding to form a
side area? Note thath=10 cm,r=4 cm propositional text frame and question patterns




Oral report Cognitive process analysis

[Analysis] Use the area of the entire Problem-solving strategy
cylinder minus the area of the missing Goal: area of rectangle
iece '
P . . . (Think: the missing part is rectangular, the
(Written on paper in 3 min and 7 s) areais h x r)

3.14x4x2x10-4x10 Manual: Think of “4” as “2” when performing

=6.28x2x10-40 the calculation
=12.56x10-40 (Solving steps are complete)
=125.6-40

=85.6 (square centimeters)

A: The areais 85.6 square centimeters

[Diagnosis] RanA made an error at the beginning of the problem-solving process.
Namely, the cutoff part was mistaken for a rectangle and missed due to cutting off the
addition of two rectangular areas. She did not understand the side with irregular
graphics. The other error was due to a careless calculation process, which eventually
led to an error in the solution

Note () is a description

4.
The first cognitive diagnosis intervention

The first cognitive diagnosis intervention was conducted December
21,2011. RanA’s first cognitive diagnostic intervention oral report
analysis is shown in Table 8.26. The oral report data recorded during
the experiment are shown on the left. On the right is the cognitive
process analysis of the oral report data that was obtained via CMMPS
analysis. The diagnostic result is based on the CMMPS-based problem-
solving cognitive process (as shown in Table 8.24).

Table 8.26 Analysis of the first cognitive diagnosis of the “cylindrical side area” of RanA

Oral report Cognitive process analysis

[Reading] There is a The text information is input by reading the problem, and the
cylinder. After cutting propositional text frame and the problem pattern are formed
one piece, as Tutu Fig. through visual coding

8.11 shows, can you find
its side area? H=10 cm,
r=4cm

Analysis (see their last | Retrieval: activates declarative knowledge and procedural
topic, think for 1 min knowledge related to the side of the cylinder




Oral report

Goghitsiapgveessemalyshe previous problem-solving strategy,

and 20 s)

Q: How to solve the
problem?

The side area of the
cylinder for this part,
minus the missing part

Question: Which side
includes several parts?
(by hand on the map to
the surface [not
included] to A)

Ask: Think carefully

Including the two
parallelograms and the
outside the area (left
side cylindrical cut)

Q: Why these two
graphics?

Because when you cut
them out, it displays two
faces. Itincludes two
parallelograms, and
outside the area (left
side cylindrical cut)

[Ask: Why there are two
more graphics?
Because of the cut piece,
and the exposed
surfaces becomes two
pieces

Question: What is the
shape of these two
graphics?
Parallelogram

[Q: How about you think
for a minute?]

Q: These two edges in
the graph (mark the
radius and height) form
avertical angle. Whatis
their relationship?

Vertical, right angle
Q: What shape is it?

MisSed two sides of the rectangular area, does not understand the
irregular graphics) Goal: two parallelograms + cut the remainder of
the cylindrical side. (Thinks of the problem, thinks correctly, but
mistakes the rectangle for a parallel quadrilateral, which looks like
a parallelogram.)

Retrieval: activates the related knowledge Retrieval: parallel
quadrilateral knowledge (looks at a parallel quadrilateral)

(a simple hint)

Retrieval: activates the concept of right angles Production:
Rectangular in the right angle and parallel quadrilateral

Manual: calculates the whole side area of the cylinder
Manual: calculates the area of two rectangles

Manual: The area of the side of the cylinder plus the area of two
rectangles. (Cuts off part of the area, mistakes for a rectangle minus
the cutoff area)




Oral report Cognitive process analysis

Rectangle

Q: Will you calculate the
side area now?

Yes

(writes down the
process of solving the
problem in 3 min and
355s)

3.14%2%4%12.56%2*
10

=12.56 *2* 10
=25.12*10

=251.2 (cm)

4%10* 2

=40*2

=80 (cmZ)

251.2 +80=331.2 (cm?)
410 =40 (cm?)

331.2 - 40=291.2 (cm?)

A: The areais 291.2 cm2

[Diagnosis] Under gradually guidance, RanA came up with the correct problem-solving
ideas but made some mistakes in cutting off the rectangular areas, leading to an error
in problem solving

Note () is a description

5.
The second cognitive diagnosis intervention

The second cognitive intervention was conducted on December 22,
2011. The second cognitive diagnosis intervention oral report data for
RanA is shown in Table 8.27. The left side of the form shows the oral
report data recorded during the experiment; the right side shows the
CMMPS analysis of the cognitive process. The diagnosis is obtained
from the cognitive process analysis on the basis of the CMMPS problem-
solving cognitive process (as shown in Table 8.24).



Table 8.27 Analysis of the second cognitive diagnosis of the “cylindrical side area” of RanA

Oral report

Cognitive process analysis

[Read the question] There is a cylinder. After cutting
apiece,as shown in Fig. 8.11, can you find the side
areaofit?h=10cm,r=4 cm

Read the text information of the
problem, and form the propositional
text frame and the problem pattern
after visual coding

[Analysis] Look at the question. What do you need to
do?

(Thinking for 10 s)

[Q: How to cut the area of this face?]
Multiply the radius by the height

[Q: What s the surface cut off?]
(Thinking for 15 s)

[Q: Like this, what is the shape of the cut?]

(Physical display side of the paper-packed
cylinders)

Round

[Q: How to answer this question?]

(Thinking for 30 s)

Radius multiplied by high

[Q: Is this rectangle cut off from a rectangular area?]
No, it’s round

[Q: how to ask?]

(Thinking for 48 s)

[Q: What partis the cut area to the entire side?]

The whole circle is 360 degrees, the cut off the part
is 60 degrees, accounting for 60%

[Q: how to figure out 60%?7?]

(Thinking for 39 s)

Accounting for one-sixth of the entire circle (side)
3.14x4x2x10 and then divide by 6

(Written on paper in 3 min and 30 s)
3.14x4x2x10

=12.56x2x10

=25.12x10

=251.2 (cm?)
251.2+ 6~ 41.9 (cm?)

Retrieval: Knowledge of the side
area of a cylinder

Goal: The part thatis cutisa
rectangle. (The key reason for
mistakes)

(Guide the student to think about the
shape of the cut surface)

Visual: physical

(Easy to answer correctly)
Retrieval: fan area formula
(Calculation error)

Visual: cut shape

(Shape to determine the correct
answer)

Retrieval: Activates the area
calculation formula

Retrieval: The degree of the circle
and the known conditions

(Correct understanding, but makes a
calculation error; score knowledge is
not strong)

Rethinking

(Self-reflection, obtains the correct
answer)

Manual: The area of the entire side
of the cylinder

Manual: Cut off part of the side area

Manual: The area of the entire side
minus the area of the side of the
cutout

Manual: The area of two rectangles
are added by cutting

Manual: Required side area

(Summary of problem-solving ideas,
clear thinking, correct calculation)




Oral report

Cognitive process analysis

251.2-41.9=209.3 (cm?)
4x10x2=40x2=80 (cm?)
209.3 +80=289.3 (cm?)
A:Its side area is 289.3 [cmz]

[Q: Does this process tell you something about
solving problems?]

The side of the cylinder minus the missing piece,
plus the inside of these two small rectangular areas;
the missing piece of the entire cylinder side area is
one-sixth of the whole

[Diagnosis] Summary: Through the physical display method, the student easily found
that the cut surface was a cylindrical side, the side of the cut area accounted for one-
sixth of the entire side, the problem-solving strategy was clear and definite, and the
answer was calculated correctly

Note () is a description

6

. Comparative analysis of solving problems in different stages

The characteristics of the problem-solving process of RanA at
different stages are shown in Table 8.28.

Table 8.28 RanA’s cognitive process changes in different stages

Stage The characteristics of the problem-solving process

Preclass The topic is relatively simple, the idea of solving the problem is clear, and the

inquiry operation is smooth. However, there is no habit of checking the process of solving

(December |the problem, The height of the potato chip can was forgotten in the first

17th) operation. After examination, it was calculated, and the final problem was solved

After-class |Itis difficult to explore the questions after class. In the beginning, the problem of

inquiry solving the problem is wrong, and part of the cut is mistaken for a rectangle.

(December |However, the student missed two rectangular areas due to the new cut area. The

20th) side of the irregular figure is not understood. In addition, an error was made in
the calculation process due to carelessness and ultimately led to a failure to solve
the problem

First Pilot step-by-step guidance. Generate the right idea for solving the problem. The

intervention | error that the cut part is rectangular led to a problem-solving error

(December

21st)




Stage The characteristics of the problem-solving process

Second By showing the material object. The student easily finds that cut off surface is a
intervention | cylindrical surface. The student figured out the side that had been cut off is the
(December |one-sixth of the whole side. Demonstrates clear thinking and correct calculation
22nd)

As shown in the comparative analysis of Table 8.28, with a
minimum number of prompts, RanA showed obvious changes in her
problem-solving process, which helped her to answer the question
correctly and form a good method for solving the problem.

7.
Teacher interviews

With respect to the usual learning situation of RanA, her
mathematics teacher, Han, reflected the following:

(1) | | |
RanA is a careful and hard-working student. After the completion
of the task assigned by the teacher, she will read, preview, and find
the previous topic to work on, but the result is not guaranteed to
be correct.

(2) _
0f 90% of the questions that the teacher says can be solved,
approximately half of the questions will be solved. The
transformation of the question type will be prone to errors, and
her ability to understand the problem independently is poor.

In the course of solving problems, RanA performed calculations
carefully, and her ability to transfer side concepts was poor in the after-
class inquiry question. After the intervention, the student could
generate solution strategies and answer the questions correctly, and
her performance was in line with that described by the classroom
teacher.

8.3.4 Discussion
(—) Role of physical display or operations in problem solving

The “cylindrical flank area” tests the ability of students to apply
what they have learned to solve practical problems. The area of the



rectangle is 94% of the union, but many students do not calculate the
area of the cylindrical side wrapping paper. The reason is that the
cylindrical side wrapping paper is converted into a rectangular shape,
increasing the difficulty. This difficulty also occurs in after-school
inquiry question. The thinking of students in the stage of concrete
operation is not formalized; thus, they require specific support. The
physical display or operation can help the students perform this
transformation smoothly. Thus, a complex problem can be transformed
into a simple problem, which is helpful for solving the problem.

(=) Reviewing during the process of problem solving

With respect to the problem of solving the “cylindrical side area”,
some students correctly solved the problem, but because of
carelessness, their calculation was incorrect. After inspection, they
were able to quickly and accurately correct their error. Both Polya’s and
Hefield’s mathematical problem-solving models underscore the
importance of inspection and checking. Huntfield noted that inspection
is a valuable activity. In a narrow sense, some trivial mistakes can be
identified through inspection; in a broad sense, we can often find other
ways to solve the problem, find connections with other problems, and
sometimes from the process of solving problems, we can extract useful
information for other situations and then become a better problem
solver.

(=) Motivation and beliefs in the process of problem solving are
highly important.

In solving the “trademark paper area” experiment, some students
give up on thinking to answer the question in a very short period of
time. However, the teacher prompted them to think carefully several
times, and they eventually answered the question correctly. Jonathan’s
research shows that motivation and beliefs also play important roles in
problem solving. (1) Polygam additionally argues that “the extent to
which you get involved in the question will depend on how ardent you
are in solving it. Unless you have a very strong desire to do so, the
possibility of solving a real problem is very small” (Georgia, 1987). The
role of motivation and beliefs in the problem-solving process is a



distinct area of study. However, it is not the focus of this study and so is
only briefly discussed here.

8.4 Explanation of the Experimental Results

for Mathematics Teaching

8.4.1 Starting from the Real Life, Creating a Problem
Situation and Designing a Typical Problem

Many studies (Verschaffel, 2002) have shown that providing more
opportunities for students to solve math problems in real-life situations
helps them transform real problems into mathematical models and
improves their mathematical problem-solving ability. With respect to
the background of or problem situation, Jonathan reported that the
problem situation generally needs to meet the following conditions: (1)
include background knowledge of the story; (2) be from a specialized
field; (3) have a time limit; (4) all the elements are interrelated; (5)
have a generally acceptable solution; and (6) stimulate the willingness
to solve the problem (Jonassen, 2000). In the process of mathematics
teaching, teachers should create situations based on reality, avoid
pseudo situations and pseudo applications, and avoid mathematical
modelling activities at low levels and artisan operations. This study
focused on the “mode” and “cylindrical flank area” and other areas of
knowledge and presented a problem situation according to the reality
of students’ lives, the typical design problem, and the basis and
principles of design.

8.4.2 The Problem-Solving Stage Is Integrated into
Classroom Teaching to Help Students Form Good Ideas for
Solving Problems

Polya’s division of mathematical problem-solving stages provided a
basis for cultivating students’ problem-solving ideas. This finding
suggests that teachers should not directly present the problem-solving
process to students while they are lecturing but should adopt the
method of “lecturing by doing” and integrate the problem-solving
stages implicitly into the problem-solving process. For example,
consider the unknown quantity first. What are the known data? What



are the conditions? After a period of time, the students will also form a
habit of solving the problem in this way and then form good ideas of
how to solve the problem.

8.4.3 When a Student Has Difficulty Solving a Problem, the
Teacher Provides an Appropriate Hint

Students will inevitably encounter difficulties in the process of solving
problems, and they should be given enough time to think. Students
should be trained to solve the problem and when encountering
difficulties, to first think of the habit of problem solving. If students fail
to make progress after a period of thinking, teachers should provide as
few hints as possible and gradually guide students to find solutions to
the problems and answer the questions correctly.

8.4.4 Pay Attention to the Cultivation of Students’
Interests, Attitudes, and Willpower

The Schoenfeld survey revealed that students’ incorrect attitudes and
beliefs about mathematics are important factors influencing their
problem-solving performance and that these incorrect attitudes and
beliefs are formed through students’ school experiences (Schoenfeld,
1985). Polya also stressed that education will teach students problem
solving when students solve problems that are not too easy for them,
when they learn that defeat is not hungry, when they learn to
appreciate a little progress, when they wait for the main idea, and when
they leave out what is not the main idea. If students have no chance to
strive to solve a problem, then their mathematics education will fail
(Polya, 1982). In school education, teachers should consciously
cultivate these factors through a daily teaching plan, correctly apply
these rules in class and ask questions. Through lectures, teachers
should perform observations and practices for many years so that
students gradually develop good problem-solving skills.

8.5 Summary

This chapter selects the typical knowledge points of declarative
knowledge and procedural knowledge to apply the “one-on-one”



cognitive diagnosis method to the practice of primary school
mathematics teaching.

In terms of the “mode” knowledge diagnosis and intervention, 28
students participated in the oral report experiment, 18 students
participated in the first cognitive diagnosis intervention, and 13
students participated in the second cognitive diagnostic intervention.
Two cognitive diagnoses during the intervention for each student
provided statistical data and strategy choices for two questions,
resulting in a total of 118 passenger oral report experiments. We
encoded and analyzed the oral report and combined all the statistics
with the case in-depth analysis. The results show that the changes in
the cognitive process during different stages of the “one-on-one”
cognitive diagnosis intervention are significant and help student to
solve the problem correctly.

In a sixth-grade class of 50 students, the topic of “the cylindrical
lateral area of the knowledge point of diagnosis and intervention was
the cylindrical side area” was used to construct a knowledge test. Forty-
eight students participated in the preclass oral report experiment, 47
students participated in the after-class oral report experiment, 46
students participated in the first cognitive diagnosis intervention, and 5
students participated in the second cognitive diagnosis intervention. A
total of 146 participants were in the oral report experiment. We
encoded and analyzed the oral report and combined all the statistics
with in-depth analysis. The results show that the changes in the
cognitive process during different stages of the “one-on-one” cognitive
diagnosis intervention are significant and helped students solve the
problem correctly.

The prospect of “one-on-one” cognitive diagnosis is favored by
many educators, and the diagnostic effect is remarkable. However, this
method is not suitable for large portions of daily mathematics
classroom teaching.
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More than 2000 years ago, the “heuristic” of Confucius (551-47 B(C)
and the “maternity witchcraft” of Socrates (470-39 BC) were major
questioning methods in education. By asking questions, educators
guide students to think and ultimately achieve their learning goals.
According to the interaction between teachers and students by
Confucius and Socrates, the content of questions should be arranged in
an orderly, logical and cognitive manner.

Currently, classroom instruction is still the major format of school
education. Classroom interaction is important in classroom teaching.
Classroom instruction is a practicum of cognitive activities (Zhong,
2012). Recent studies have shown that interactions between teachers
and students in classrooms essentially involve a series of social
cognitive processes (Schwarz et al., 2009; Wedin, 2010). This book
studies existing methods for analyzing classroom interactions from the
perspectives of the behavioral system and the information system.
Furthermore, this book analyzes classroom interactions as learning
processes on the basis of brain science, cognitive neuroscience,
psychology, and artificial intelligence. Finally, this book simulates the
interactions in ACT-Rim to better understand the cognitive processes
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and to help teachers understand the learning process thoroughly and
thus design effective teaching methods to assist students in learning.

9.1 Existing Classroom Interaction Analysis
Method

9.1.1 Behavioral System Perspective

From the perspective of the behavior system, studies of teaching focus
on two aspects. The first is the teaching value of studying specific
behaviors.

Studies that have focused on the relationship between learning
persistence and the teaching interaction of adult learners have shown
that 26% of learners agree that asynchronous discussion is positively
related to persistent learning. Wai King Tsang’s study examined the
interaction between teachers’ feedback in nonnative English classes
and students’ hand-raised oral reports. The results revealed the
following: (1) Redoing may trigger other forms of feedback. (2)
Although redoing and explicit modification help correct spelling
mistakes, discussion, and consultations are more conducive to the
correction of grammatical errors (Tsang, 2004). Researchers such as
Judith Kleine have examined the relationships between different
formats of interaction (such as face-to-face communication without
using a computer, computer-based collaborative asynchronous
communication, and computer-assisted face-to-face communication).
Research has shown that computer-mediated interactions are more
regulated; however, there is more learning in face-to-face interactions
than in computer-mediated interactions.

Another emphasis of research on pedagogical analysis conducted
from the behavioral system perspective is a detailed hermeneutic
analysis of interactions. The topics include an effective and reliable
method for defining the structure and characteristics of the dialog, the
role of dialog as understood through interactive dialog analysis, and the
computing model of dialog in the intelligent educational system
(Pilkington, 2001). Better interactive quality results in a higher level of
interaction (Moore & Marra, 2008).




Typical classroom interaction analysis methods include the
Flanders interaction analysis system (FIAS) and student-teacher
analysis. The Flanders interaction analysis system is a classroom
behavior analysis technology proposed by Flanders while at the
University of Minnesota in the 1960s. It is used to record and analyze
the processes and impact of classroom lingual interactions between
teachers and students. The system consists of three main parts: (1) a
set of coding systems for describing interactive behaviors in
classrooms; (2) a set of standards for observing and recording coding
standards; and (3) a matrix for displaying data for analysis. Ning Hong
et al. used the Flanders interaction analysis system to analyze a middle
school physics class and ameliorate the shortcomings of FIAS (Ning &
Wu, 2003). S-T analysis is used mainly for quantitative analysis of
classroom interactions. S-T analysis of teaching behaviors is divided
into S (student) behaviors and T (teacher) behaviors. It moreover
divides teaching into four different teaching modes: the practice mode,
the lecture mode, the conversational mode, and the mixed mode (Fu &
Zhang, 2001). The S-T analysis results can be represented with S-T
charts. Shan Yingjie from Shaanxi Normal University used S-T analysis
of educational technology to analyze education processes in the
Educational Technology Research Methods course, the TV Principles
course, and six other specialized courses (Shan, 2008).

9.1.2 Information System Perspective

In the field of teaching analysis, some scholars regard teaching as a
process of information flow. Professor Li Kedong carried out
information flow analysis on the cognitive learning process in the
teaching system and adopted functional simulation, a method of
systematic scientific research, to analyze the teaching system (Li,
1990). A. Dean Hauenstein introduced the concept of systems into
instruction and made it clear that all systems are cyclic processes of
input, process, output, and feedback. He suggested that the instruction
system was an information system (Malan & Sheng, 2005).

Professor Yang Kaicheng also considers the instruction system
essentially an information system. The analysis of the teaching system
is actually an analysis operation, which uses another coding system to
characterize the natural language representation of the teaching



system, builds a teaching analysis from the perspective of information
systems, starts from the overall functional mechanism of the teaching
system, and introduces the teaching analysis from the perspective of
the information system into the actual analysis of the operation (Yang,
2007). He proposed IIS (instructional information set) graph analysis.
Finally, Lin et als empirical research proved that the activation of
target knowledge and learning outcomes are positively related (Lin,
2009).

9.1.3 Comments on Existing Analytical Methods

(1)

(2)

(3)

The Flanders interaction analysis system (FIAS) mostly uses fixed
time units (such as every 3 s) to collect data, which can easily lead
to “meaning unit” segmentation. Additionally, the observation
scale quantifies only the language behaviors of teachers and
students, which is too approximate to capture the whole-class
interaction process and thus cannot reflect all the interactions in a
class. It pays more attention to teachers’ (or students’) language
behaviors, such as the proportions of teachers’ and students’
speech, the number of teachers’ questions, and the number of
students’ answers. The analysis is moreover limited to the level of
explicit behavior.

In S-T analysis, the behavior definitions of S and T are inexplicit.
Through the S-T analysis chart, we can determine the amount,
proportion and time of the teachers’ and students’ behaviors, but
we cannot identify how they have behaved. Additionally, we can
identify the teaching mode, but the evaluation of the teaching
process is vague.

[IS graph analysis is an improvement of the former methods that
is based on the analysis of behavioral systems. It pays more
attention to the content of teaching and predicts teaching
effectiveness by analyzing the activation of knowledge in the
process of classroom interaction. However, IIS graph analysis
focuses on the input and output of teachers and students,
considering that internal information processing is transparent
and invisible; that is, it does not consider the internal information
processing of the students.



9.2 Classroom Interaction Cognition Analysis

and Simulation

9.2.1 The Boom of the Learning Sciences

Currently, many countries strongly support research in brain science
and the learning sciences. Arden Bement, a chief executive at the
National Science Foundation, asserted: “Fundamental research on
learning is important. In today’s complex and rapidly changing
environment, a basic understanding of the learning process is to help
us to develop a knowledge base that is necessary for the prosperity of a
world that is forever in flux.” Beijing Normal University Cognitive
Neuroscience and Learning State Key Laboratory and Southeast
University Learning Science Research Center are conducting research in
this area.

The development of the learning sciences provides a new
perspective for effective research and study. The learning sciences
constitute an interdisciplinary field, as the following quotes
demonstrate: “It incorporates a variety of theoretical perspectives and
research paradigms about human science in order to understand the
nature and conditions of learning, cognition, and development.” “The
goal of learning science is primarily to better understand cognitive
processes and social processes to produce the most effective learning
and, secondly, to redesign our classrooms and other learning
environments with the knowledge of science so that Learners can learn
more effectively and deeply (Sawyer, 2006).” The learning sciences
advocate that learning be placed in a broad perspective of
multidisciplinary research, which covers many fields of research, such
as information science, brain science, cognitive science, psychology, and
education, and applies the latest developments in brain science to the
learning and education process by building bridges between the mind,
the brain, and education.

The U.S. Department of Education’s Office of Educational
Technology released the National Educational Technology Plan 2010
(“Plan”) on March 5, 2010, entitled “Changing American Education:
Technology to Make Learn More Powerful.” The term “learning science”



appears many times in the plan. The latest research in the learning
sciences reveals the process of how people learn, which provides an
important theoretical basis for the application of educational
technology. The plan also acknowledges that current education systems
focus little attention to students’ thinking processes, place too much
emphasis on the mastery of factual knowledge when assessing
students, and do not focus on students’ feedback and improvement of
immediate learning during the learning process. This situation is also
common in the Chinese education system. The continuous development
of the learning sciences provides an important foundation to study
classroom interactions from the perspective of the learning process.

9.2.2 Classroom Interaction Cognitive Analysis Framework

According to the current psychology and cognitive neuroscience
research results (Banks, 2009; Nader & Hardt, 2009; Torey, 2009;
Wilson et al., 2004), the classroom interaction cognitive analysis
framework—CAUT (cognitive architecture of human thinking) (Cui et
al.,, 2011)—is shown in Fig. 9.1.

emgimedodute masoy

Fig. 9.1 CAUT

CAUT pays close attention to students’ thinking processes and
particularly to the understanding of the learning process. The model
includes the following parts: sensory organs, sensory controllers, object
perception, long-term declarative memory, long-term procedural
memory, active objects (working memory), control and decision-
making, situation-goal-anticipation, motor control, device effects, the
outer loop, and the inner loop. To further describe CAUT, it can be
divided into the following eight modules: (1) External loop/Internal



loop: internal loop or external loop; (2) IO (internal object): internal
object; MC (declarative memory retrieval check): declarative memory
extraction to determine whether the perception of the object reveals a
new object or the old object; (4) LTDMO (long-term declarative
memory operation): long-term declarative memory cognitive
operation; (5) AO (active object buffer): activation of the collection of
objects, including seeing and hearing the object, is a part of working
memory (working memory); (6) AADM (active action buffer and
decision-making): activation of action, decision-making and related
parts; (7) CGE (context, goal, expectation): context, target, and
expectation related to current task; and (8) Action: action module,
including motion control and effectors. The sequence of modules in
CAUT is shown as in Fig. 9.2.

Fig. 9.2 Modular representation

When we perceive (see or hear) an external object, we consider it
an internal object by visual or auditory channel coding and then
determine if the internal object is stored in the object and activate the
corresponding object if it has already been stored in long-term
declarative memory; otherwise, it will be repeated and directly enter
into the active object (part of the working memory) (for example, in
real life, we remember that a strange phone number needs to be
repeated). The objects in working memory activate corresponding
actions in long-term programmatic memory. There may be more than
one active action, and one action is selected through decision-making.

Compared with other cognitive structures such as ACT-R (Anderson
etal, 2004), SOAR (Laird et al., 1987), and CLARION (Naveh & Sun,
2004), the model has the following features:

1 _
An internal speech loop is added between the effector and the
sensory organs, and the existence of the loop has been
demonstrated in cognitive neuroscience (Pulvermiiller & Fadiga,
2010; Wiley, 2006).

(2) Long -term memory is further divided into declaratlve memory
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skills in the learning process.

(3) . o .
Emphasize the consolidation of memory. Recent studies have
shown that the use of long-term memory in learning or other
cognitive processes is separate from the consolidation of memory
and that the consolidation of memory occurs after cognitive
processes (Born & Diekelmann, 2010; Maquet, 2001).

9.2.3 Cognitive Analysis and Simulation of Classroom
Interaction

(—) Research subjects

We selected a math class from the seventh grade (second semester).
The content is from Chapter I, “Rich graphics world,” Section 4,
“Looking from different directions.” The textbook is a compulsory
education curriculum standards experimental textbook published by
the Beijing Normal University Publishing Group for grade seven
mathematics (May 2005 fourth edition). The instructor is Tang Lujun
from Jinan Yuying Middle School.

(=) Typical classroom interactive sequence

For research purposes, the class video was converted into text.
While watching the video, we found that teachers often used in-kind (or
teaching aids) and multimedia courseware to help students understand
why they were in a middle school mathematics class. Therefore, not
only did the teacher’s classroom discourse need to be converted into
text during the conversion process, but the entity displayed and the
contents on the big screen were also recorded using annotation and the
addition of remarks.

In this study, the “teaching goal-teaching subgoal” approach
classified class interactive text. The teaching objectives were
established based on Bloom’s educational taxonomy of objectives
(revised version) (Aderson, 2009) in terms of knowledge and cognitive
process analysis. We classified the teaching activities in the interactive
texts of “Looking from Different Directions” and obtained 9 types of



teaching activities in time sequences. We chose an interactive sequence
to explain the concept, as shown in Fig. 9.3.

hinking prosess

Fig. 9.3 Explaining the concept of the “main view” in the classroom interaction sequence

(=) Interactive sequence cognitive process simulation

ACT-R has been a well-known cognitive simulation tool for many
years at the Cognitive Science Laboratory led by Anderson, a famous
cognitive psychologist at Carnegie Mellon University in the United
States. Its internal structure and parameter settings are based on a
large amount of cognitive psychology experimental data. Most of the
data have been verified by NMR experiments. The extrinsic format is a
programming language. The programs written in this programming
language correspond to the cognitive preconditions of the ACT-R, which
is consistent with the cognitive process of real-life experiments and can
achieve simulation results. It has been widely used to simulate different
aspects of human cognitive behavior, such as the hornet problem,
language comprehension, pattern recognition, memory, and simple
geometric proofs.

The simulation of the learning process is very complicated and
needs to be analyzed in a particular context for each sentence.

Figure 9.3 shows a typical classroom interaction sequence. Owing to
space limitations, this section selects only the classroom interaction
sequence of “teacher question-student answer” for simulation analysis
to provide a method for classroom interaction analysis. The interaction
sequence is shown in Fig. 9.3, where T is the teacher and S is the
student.

T: “Well, what I see from the front is called...?”
S: “Main view.”



The CAUT model is used to analyze the interactive sequence of the
selected class. The results of the analysis are transformed into a
program (Lisp programming language) that can be executed in ACT-R to
simulate the learning process.

Before asking questions, the teacher has already discussed the
concept of “the main view,” which assumes that the student’s long-term
declarative memory stores “the front view as the main view.” The
following describes the teacher questioning and the cognitive process
of student responses:

(1) Students hear the teacher’s words: “Well, what I see from the
front is called...?”. The words enter the auditory pathway in the brain
(such as the vestibular pathway) and undergo neural coding; (2) the
encoded word activation-related objects are triggered in the mental
lexicon of LTDMO and into the active object set (AO); (3) the content of
the set of active objects (part of the working memory) is semantically
understood, and the target of the sentence is set to search for the
problem of searching for triples (seen from the front as?); (4) the active
object activates a production rule in long-term procedural memory and
generates the corresponding action; (5) there may be more than one
active action, and one of the actions is selected through the “decision”;
(6) the form (viewed from the front as?) is searched in long-term
procedural memory; (7) there is only one with the answer “main view,”
and the search ends; and (8) the students say the answer.

To visualize what students hear, “So, now I see from the front is
called?”, answer the “main view” of the cognitive process, with M rows
and eight columns of the cognitive matrix to represent, as shown in
Fig. 9.4. The numbers on the left indicate the line numbers, each line
represents the cognitive logic step, not the actual step, and the last line
indicates the end of cognition. The eight columns correspond to the
eight modules in Fig. 9.2. As shown in Fig. 9.4, the target is set in line 7
until the student understands the teacher in line 9. Line 12 gives the
answer, that is, the student reaches their goal, and the cognitive task
ends.



Fig. 9.4 Cognitive matrix description of the student answer to the “main view” problem

ACT-R provides an abstract cognitive structure that describes the
cognitive model from a functional point of view only. In this study, we
need to write a program that can be simulated in ACT-R according to
the analysis process of the cognitive matrix. The program is written in
the Lisp programming language. The simulation results are shown in
Fig. 9.5. The minimum time interval is 0.55 s.

b
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Fig. 9.5 Simulation of cognitive processes

Through the simulation, we find that, in answering the questions,
students must first determine the goal and highlight its importance.
This sequence is in line with the teaching task of “informing learners’
goals” in the “Nine Teaching Events” proposed by Gagne. Based on the
objects in the activity set, match generation is activated (i.e., production
begins), and extraction is started in long-term declarative memory
(start retrieval); when multiple productions are activated at the same
time, conflict resolution is adopted, and one of the productions is
executed. Specifically, at 0.5 s, one of the productions is activated to
search for long-term declarative memory to find the matching content.
The goal is achieved, and the cognitive process is complete.



(V) Analysis of the simulation results

Through the simulation mentioned above, the internal cognitive
process of students’ answering questions is deeply examined. This
internal cognitive process is demonstrated by ACT-R. The declarative
knowledge and procedural knowledge involved in this learning activity
are extracted. Depending on the type of knowledge, teachers use
different teaching methods, such as the main view, left view,
proposition and other declarative knowledge, mainly provided by the
teacher, to explain memory. For example, arithmetic computing, solving
equations, and geometric proofs of procedural knowledge require
students to engage in the actual training process.

The model can also analyze whether teacher—student interactions
can effectively promote students’ cognition and meet students’
cognitive rules. For example, two different ways of asking questions,
“Do you see from the front?” and “Do you see the front view from the
front?”, fall into two different categories: the former is a search
problem, and the latter is a judgment problem. The cognitive processes
of answering these two types of questions in ACT-R differ, and students
exhibit different levels of procedural knowledge in answering these two
types of questions.

9.3 Explanation of Cognitive Process Analysis

of Classroom Instruction

Through the analysis above, we find that different classroom
interactions produce different learning processes, which will lead to
different learning outcomes. Therefore, teachers should pay attention
to the following three aspects of classroom teaching:
1
() Carefully designed classroom questions promote students’ deep
understanding

In primary and secondary school classrooms, asking questions is
still a common method of classroom interaction. However, from actual
classroom observations, teachers ask simple, casual, or even repeated
questions to enliven the classroom, some questions lack a scientific
basis and scientific design, low-level questions are posed, and there is



excessive inhibition of pure memory problems in the development of
students’ thinking, none of which is conducive to a deep understanding
of the teaching content. Teachers should carefully design effective
classroom questions based on the characteristics of students’ cognition
and content so that students can automatically establish connections
between old and new knowledge and deepen their understanding of
the learning content when answering questions. As seen from the
simulation process above, different questions were asked about the
“main view,” such as “What is seen as a positive?” and “Is the main view
seen from the front?”, resulting in different cognitive processes. Hong
and Lu (2010) raised the standard of effective classroom questioning
and provided a reference for teachers to design effective classroom
questions.

(2)
Providing reasonable feedback enables students to actively
participate in the learning process

In classroom teaching, teachers often apply simple evaluations such
as “good,” “right,” and “wrong” to students’ responses. Providing a
single feedback method, especially for students who answer incorrectly
or incompletely, lacks further inspiration and induction. It is impossible
for all students to answer teachers’ questions correctly. Thus,
reasonable inspiration and feedback are essential; even if students
provide the correct answer, teachers can ask students about the process
of finding the answer, such as “How did you get to this answer?” and
“Why do you answer like this?”. Such questions can help students pay
more attention to the learning process, establish connections between
old and new knowledge, and develop the habit of knowing what they
are doing.

(3)
Scientific design of the teaching process helps students develop
good thinking habits

In primary and secondary education, it is more important to help
students develop good thinking habits than help them simply acquire
knowledge. Good habits of thinking can help students engage in smooth
knowledge transfer when they encounter similar problems or new
problems and even creative problem solving. Thinking habits are an



important part of tacit knowledge and an important part of procedural
memory. Their development is a long-term process. The development
of thinking habits should be related to the teaching of specific subject
knowledge, which requires teachers to explain the typical problems of
knowledge point design during instruction. Each step of the
explanation process should consciously train students’ thinking ability
and place a greater emphasis on the problem-solving process so that
students continue to develop good thinking habits when problem
solving. For example, when the concept of “modalities” in the fifth grade
textbook (second volume) is explained, it is common practice to
provide questions and data and then tell the students that “the most
frequent occurrence of a set of data is the mode of the set of data.”
Another method is to state the reality, such as “The school has agreed to
hold a birthday celebration next year for grade five, class three.
However, only the birthdays of students born in a certain month can be
celebrated. If you were the class teacher, how would you choose the
month? Which month do you think should be chosen?”. This example is
close to the students’ lives; students can therefore collect data and
select the month in which the most students who have a birthday
according to the statistical results and thereby grasp the concept of the
“mode.” Although two different teaching processes allow students to
learn the “plural” concept, there is a difference in the degree of
conceptual understanding and ability to use the “plural” concept to
solve practical problems. During classroom teaching, teachers should
help students develop thinking habits to use mathematical knowledge
to solve practical problems.

9.4 Summary

This chapter analyzes the existing methods of classroom interaction
analysis from the perspectives of the behavior system and information
system and, on this basis, proposes analyzing classroom interaction
from the perspective of the cognitive process. In accordance with the
research results of brain science, cognitive psychology and cognitive
neuroscience, this chapter proposes a classroom cognitive framework
—i.e., CAUT. The typical classroom interaction sequence of “Reading
from Different Directions” in a middle school (Grade 7) mathematics



classroom was subsequently analyzed by using CAUT, and a cognitive
simulation was implemented with ACT-R. According to the analysis and
simulation results of classroom interaction cognition, three suggestions
for classroom teaching are proposed to help teachers design more
effective teaching methods.

However, during the process of conducting classroom interaction
analysis based on the learning process, this chapter performs only a
brief analysis. The preparation of a cognitive program requires a
specific and profound understanding of the learning process. How to
use the CAUT model to automatically generate cognitive programs and
ACT-R to achieve whole-class simulation needs to be further studied.
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The Compulsory Education Mathematics Curriculum Standards (2022
edition) emphasizes that the mathematics curriculum should pay
attention to the teaching level, stimulate the learning interest of
students with learning difficulties, encourage them to think positively,
cultivate good learning habits, and adapt to the developmental needs of
students (Ministry of Education of the People’s Republic of China,
2022). Students with learning disabilities constitute a particular group
to which frontline teachers give attention. This book proposes a
cognitive simulation of problem-solving strategies based on existing
research. Taking the problem of “plurality” in primary school
mathematics as an example, this book, which is based on the cognitive
problem-solving model in primary school mathematics, analyses the
cognitive process of problem-solving strategies, writes a cognitive
process, and performs a cognitive simulation. Afterward, students with
learning disabilities were selected and interviewed by their teachers to
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understand their usual learning situation. The cognitive simulation of
problem-solving strategies for students with learning disabilities
helped visualize the internal problem-solving process, helped teachers
develop personalized intervention schemes, helped students overcome
bad problem-solving habits and develop good problem-solving
strategies. Problem-solving strategies and cognitive simulation are
essential for designing and developing intelligent tutoring systems,
building innovative learning environments, and providing targeted
cognitive diagnosis and intervention.

10.1 Introduction

10.1.1 Analysis of Students with Learning Disabilities

Learning disabilities (LDs) were first proposed by American scholar S.
Kirk in 1962 and mainly refer to students with average intelligence
whose academic performance is lagging (Bateman & Kirk, 1962). Kirk
and Chalfant (1984) classified learning disabilities as developmental
learning disabilities. Tournaki (2003) discussed the importance of
strategy instruction and teaching on mathematical ability (MD) and the
importance of direct tactics in addition to instruction for mathematical
ability (MD). In recent years, many studies have focused on the
characteristics of problem-solving strategies and the development of
difficulties in primary school mathematics (addition and subtraction
over 20 years) (Geary et al., 1999).

Research on learning difficulties of students with learning
disabilities has been conducted using different methods. Bai et al.
(2020) compared and explored the strategies used by students with
learning difficulties and ordinary students in the process of solving
subtraction problems and noted that students with learning difficulties
chose borrowing strategies more often, whereas ordinary students
chose decomposition strategies more often. Additionally, students with
numerical difficulties demonstrated poor strategy implementation
effectiveness and relatively rigid choices. Liu and Mao (2021) adopted a
meta-analysis method to explore the effectiveness of interventions in
improving the mathematics performance of students with mathematics
learning difficulties and its regulatory factors. Yang et al. adopted a
three-factor mixed experimental design and considered the cognitive



processing of students with learning difficulties to analyze the influence
of different levels of central executive load on the use of estimation
strategies by students with math learning difficulties and ordinary
students. Wang et al. explored the influence mechanism of working
memory components on word problem solving in children with math
learning difficulties and analyzed groups of students with learning
difficulties, ordinary students, and excellent students from the aspects
of the central executive system, visual template, and speech loop. Liu
(2018) tested the word problem-solving ability of students in the
fourth grade of primary school. The results revealed that students with
math learning difficulties were able to identify information less
effectively than ordinary students were and that the use of schema
representation strategies could better help students with learning
difficulties solve word problems. Zhang et al. used eye movement
technology to investigate the influence of picture information on the
ability of students to solve different subtypes of math problems and
showed that picture information can promote the schematic
representation of problems by students with math learning difficulties,
thereby improving their problem-solving performance. Liu et al.
adopted an experimental research method to investigate the types of
visual representations of students with math learning difficulties in the
third grade of primary school in solving word problems and their
impact on word problem solving and further explored the role of
examples in promoting the beneficial effect of visual representations in
solving word problems on students with math learning difficulties.

10.1.2 Mathematical Problem-Solving Cognitive
Simulation

The cognitive simulation of problem solving is a topic of interest to
researchers in the learning sciences. To perform a cognitive simulation
of problem solving in junior high school mathematics, Professor
Anderson et al. (2008) of the School of Psychology, Carnegie Mellon
University in the U.S., used ACT-R (adaptive control of thought-rational)
to implement a cognitive simulation of the process of solving the
algebraic equation “7x + 3 = 38.” This simulation was performed using
ACT-R (adaptive control of thought-rational Anderson et al., 2008). Cui
et al. used the ACT-R 7.0 software developed by Anderson’s team and



the Pyactr package developed by Adrian Brasoveanu et al., which
improved language compatibility, and applied the cognitive simulation
method to explore the cognitive processes and differences between the
profit and loss model and the absolute value model of rational number
addition. In terms of the cognitive simulation of problem solving in
primary school mathematics, Wei et al. implemented a cognitive
simulation of problem solving in primary school mathematics to map
the brain areas activated at a particular moment of problem solving and
the brain’s blood oxygen-level dependent response (blood oxygen
level). The corresponding data of the brain’s blood oxygen level-
dependent response (BOLD) are presented (Cui & Wei, 2013; Wei et al.,
2012). Based on the cognitive process analysis method, Zhang et al.
conducted cognitive process analysis and cognitive simulation for the
process of solving the third-grade mathematics “comparison” problem
and compared the cognitive output and extraction path of teachers and
students in the cognitive process. Regarding cognitive simulation of
geometry proof problems, Gelernter et al. (1960) developed a computer
program, Geometry Machine, to simulate the human proof of geometric
theorems. Wu (1984) proposed a mathematical algorithm named “Wu’s
method” for the proof of geometry theorems from the point of view of
computers. Zhang et al. subsequently improved “Wu’s method” to
enable automatic problem solving for nearly all geometry proof
problems. Although these algorithms achieve automatic problem
solving of geometry proofs, they analyze computer problem solving
automatically without considering the actual problem-solving process
of students. Li et al. analyzed the cognitive process of problem solving
based on the cognitive model, used ACT-R to perform cognitive
simulation of parallel proof geometry problems, and used the oral
report method to compare and analyze the students’ geometry proof
process with the results of the cognitive simulation and found that the
problem-solving cognitive simulation better approximated the natural
process.

10.2 Cognitive Simulation of Problem-Solving
Strategies



10.2.1 Methodology

The cognitive model is the basis for analyzing problem-solving
strategies. The problem-solving cognitive model is constructed based
on students’ cognitive characteristics and subject content
characteristics. The problem-solving strategy is subsequently analyzed,
and the process of selecting and implementing the problem-solving
strategy is described in the form of a cognitive matrix. The cognitive
rigor matrix can display problem-solving strategies graphically and
visually. Then, according to the content of the cognitive matrix, the
cognitive process is written using a programming language (e.g., Lisp)
to perform a cognitive simulation.

10.2.2 Birthday Data Collection and Statistical Strategy in
the Problem-Solving Process

The Compulsory Education Mathematics Curriculum Standards (2022
edition) emphasizes the following principles: “Guide students to find
and propose problems in real situations, analyze and solve problems by
using observation, speculation, experiment, calculation, reasoning,
verification, data analysis, intuitive imagination and other methods
(Ministry of Education of the People’s Republic of China, 2022).”
Research has shown that the choice of problem-solving strategies is
significant for students with learning disabilities in primary school
mathematics when they are solving mathematical problems. Taking the
application questions that primary students with learning disabilities
generally reflect as examples, the difficulty lies in the choice of
problem-solving strategies, i.e., how to convert the application
questions into arithmetic equations (e.g., simple arithmetic equations,
quadratic equations, and binary equations). After converting the
questions into arithmetic equations, the students can use the
arithmetic operations that they have learned to answer arithmetic
questions, and the process of doing so is not complicated for the
majority of students.

“Plurality” is a typical example of declarative knowledge in Unit 6,
“Statistics,” in the second textbook for the fifth grade. Analyzing the
process of problem solving, we find that data collection is the
prerequisite for solving the problem of plurality. The Compulsory
Education Mathematics Curriculum Standards (2022 edition) stresses:



“Through the language of mathematics, we can simply and precisely
describe the quantitative relations and spatial forms of natural
phenomena, scientific situations and daily life” (Ministry of Education
of the People’s Republic of China, 2022). However, when solving real-
life problems, data collection is not readily available and needs to be
collected and counted. Therefore, mastering data collection and
statistical strategies is crucial for students to solve real-life problems.

Research on learning difficulties in students with learning
disabilities in the fifth grade of primary school was selected as the
research object. The analysis of the experimental data revealed that
many students (e.g., DuanYC, DuanZX, etc.) had problems such as
leakage and error multiplication of the statistical strategy, which led to
problem-solving errors. Data processing of the “plurality” problem
involves collecting the number of people who have birthdays each
month and determining the month with the highest number of
birthdays after counting. To reveal the data collection and statistical
strategy in a more in-depth and visual way, a cognitive process was
written based on the primary mathematics problem-solving cognitive
model (Cui & Wei, 2012) to perform a cognitive simulation.

Figure 10.1 is a simulation used to collect the number of people who
had a birthday in May (denoted by M), i.e., the number of M’s. The
strategist first counts the number of M in Row 1, then the number of M
in Row 2, and finally the number of M in Row 3. The program output is
5, i.e., “the number of students whose birthday month is May is 5.
Figure 10.2 shows a visualization of this data collection process, with
the red circle indicating the last M. This visualization of problem-
solving strategies can help primary school students address the issue of
not being able to start processing the data. Of course, students can
choose a specific problem-solving strategy according to their
preferences or problem-solving habits, and the methods mentioned
above are only a few of the options. Teachers can select effective
teaching strategies according to the simulation results and students’
actual situation in the classroom, which will help students solve
problems more effectively.
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Fig. 10.1 Cognitive simulation of the data collection process
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Fig. 10.2 Visualization of the data collection process

According to the analysis, the declarative knowledge required for
primary school students to correctly count the months with the highest
number of birthdays is shown Table 10.1.

Table 10.1 Declarative knowledge required to
count the months with the highest number of
birthday celebrations

(p1 ISA count-order first 1 second 2)

(p2 ISA count-order first2 second 3)

(p3 ISA count-order first 3 second 4)

(p4 ISA count-order first4 second 5)

(p5 ISA count-order first 5 second 6)

(p6 ISA count-order first 6 second 7)

(p7 ISA count-order first 8 second 9)

(p8 ISA count-order first 9 second 10)

(p9 ISA count-order first 10 second 11)
(p10 ISA count-order first 11 second 12)

Table 10.1 shows ten ordered pairs, where p1 represents the
ordered pair (1, 2), p2 represents the ordered pair (2, 3), and so on.



These ordered pairs are used to compare the sizes of two numbers.
Comparing the sizes of numbers has become automated for adults. If
primary school children do not master these ordered pairs, they will
make mistakes when comparing the sizes of numbers; i.e., they will not
be able to choose the month with the highest number of birthdays.

The number of birthdays in each month is now known to be 3 in
January, 2 in February, 4 in March, 3 in April, 6 in May, 4 in June, 2 in
July, 3 in August, 2 in September, 4 in October, 4 in November, and 5 in
December. Figure 10.3 shows a cognitive simulation of the month with
the highest number of birthdays, i.e., May.

Fig. 10.3 Cognitive simulation of the month with the highest number of birthdays (partial)

10.2.3 Interviews with Teachers

Wang(C’s math teacher was interviewed during the study to understand

Wang(C'’s usual math learning performance. The teacher’s feedback is as

follows.

(1) o . . .
WangC is intelligent, outgoing, confident, and active. However, he
needs to improve in language learning, which affects his
understanding of math problems. When he was in the lower
grades, he received less attention from teachers, and his language
comprehension was poor. Some topical meanings of application
questions are not sufficiently understood, resulting in mistakes.
WangC has no problem understanding what has been taught in
class. As long as he can understand the meaning of the topic, he
has no problem expressing the equations, but carelessness can
sometimes lead to calculation errors.

(2) WangC solves problems very quickly and is among the top two
students in terms of problem-solving speed. He does not have a



habit of checking his work after finishing and thus sometimes has
a higher error rate than other students do.

The above reflections from the student’s teacher are generally
consistent with the conclusions drawn from analyzing WangC'’s oral
report data on the problem-solving process.

10.3 Implications for Teaching Mathematics

10.3.1 Helping Students Develop Good Problem-Solving
Strategies

Good problem-solving strategies are essential to ensure students can
answer math problems correctly. There are often multiple problem-
solving strategies for the same math problem, and they often have
commonalities. Teachers should encourage students to adopt multiple
strategies and methods rather than “standardized” and “single”
problem-solving methods to solve a problem. Good problem-solving
strategies not only help students, especially students with learning
disabilities, successfully solve problems but also constitute meaningful
ways to develop students’ thinking skills in mathematics.

10.3.2 Attention to Differences in Students’ Abilities

The “one-on-one” cognitive diagnosis can determine each student’s
mathematical problem-solving deficiencies and, in response to the
students’ problem-solving errors, recommend different levels of
problems for students who exhibit different levels of ability. When
students encounter difficulties in problem solving, teachers can provide
targeted questions to gradually guide students to correctly answer the
questions independently, meet the needs of students with different
levels of ability, and promote the sustainable development of students’
mathematical ability.

10.3.3 Early Identification of and Intervention in Cognitive
Disorders in Mathematics

Difficulties are identified in advance through “one-on-one” cognitive
diagnosis, and remedial measures are taken to reduce or eliminate



them. By analyzing the situations of students with learning disabilities
in mathematics, we can identify the cognitive barriers that lead to
learning difficulties and analyze the causes of these barriers according
to different types of problems and grade levels. As the saying goes,
“Rome was not built in a day.” Moreover, cognitive obstacles in the
higher grades may have gradually developed in the lower grades.
Therefore, prevention and intervention in the lower grades to address
the causes of cognitive obstacles will positively impact learning in the
higher grades. For example, students often make mistakes when
multiplying two-digit numbers. A careful analysis of the calculation
process reveals that students have already mastered the rules of simple
multiplication. However, they make “digital carry” mistakes when
adding two numbers; i.e., a particular cognitive pattern has been
formed in the brain. When first-grade students first encounter addition,
“numerical arithmetic” calculation, and problem solving, it is necessary
for teachers to focus on the use of students’ cognitive characteristics to
explain the problem-solving process in detail, which can effectively
prevent problems that may occur later in learning and effectively
“obtain twice the result with half the effort.”

10.3.4 Targeted Implementation of Special Counseling for
Students with Cognitive Impairment in Mathematics

An analysis of the cognitive disabilities of students with learning
disabilities reveals that the same or similar cognitive disabilities exist at
the same grade level. An in-depth analysis of a typical cognitive
impairment will be carried out to determine the reasons for its
existence and formulate effective intervention measures to provide
targeted counseling to students with that impairment. Changing the
status quo according to which teachers explain all problems to all
students in the class can save students’ learning time and increase their
interest in math. On the one hand, this change can provide in-depth
explanations for specific math problems. On the other hand, it can truly
offer an “antidote against the disease.” For example, “one-on-one”
cognitive diagnosis is a good choice in schools with students with
learning disabilities.



10.3.5 Rational Use of Students’ “Nearest Development
Area” to Promote Cognitive Development

Teachers can be informed of students’ cognitive level through diagnosis,
develop a series of intervention measures according to the
requirements of educational objectives, present them to students in a
particular order and with specific requirements, and consciously
participate in and intervene in students’ learning process. Students
acquire knowledge, skills, and problem-solving strategies, which are
internalized in their original cognitive structure and contribute to
forming a new structure, thus promoting children’s cognitive
development. Feuerstein noted that the acquisition of intermediary
experience is accompanied by the process of growth in each individual
and directly affects the individual’s cognitive development.

10.3.6 Taking Advantage of New Technologies to Improve
the Intelligence of Diagnosis and Intervention

Students with learning disabilities are a “vulnerable group” in the
classroom. To promote these students’ learning performance, teachers
must spend more time and energy, which is currently one of the
problems faced by primary and secondary school teachers. The existing
computer adaptive diagnosis systems cannot meet these students’ need
for personalized learning. At present, the continuous emergence of
technologies such as learning analytics, gesture-based technology, and
virtual reality technology is gradually being applied to the field of
education, which gives full play to the advantages of emerging
technologies from the actual starting point of students. Combined with
subject content knowledge, design, and development to meet the
personalized learning needs of students’ teaching robots or intelligent
cognitive diagnosis and intervention systems, the automatic diagnosis
of learning barriers and effective intervention measures can stimulate
the automatic diagnosis of learning disabilities and provide effective
interventions to stimulate students’ interest in learning, improve
diagnostic effects and enrich the classroom teaching environment.
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Conclusion

This book is based on the research results of mathematical pedagogy
and the learning sciences with respect to the process of problem
solving. It takes primary school mathematics problems as the research
objects to explore methods for problem solving via cognitive
simulation. The research process used problem-solving cognitive
process analysis, simulation and application as the main foci and
included the following three parts:

(1)

(2)

A cognitive model of primary school mathematics problem solving
was constructed, and a method for establishing an ACT-R model of
elementary mathematics problem solving was proposed. With the
Polya mathematical problem-solving model, each stage of
problem solving was described. Based on the thinking
characteristics of primary school children, typical problems in
primary school mathematics were analyzed. Based on research
from cognitive psychology, brain science and cognitive
neuroscience, a cognitive model of primary school mathematics
problem solving is constructed. The characteristics, application
scope and educational significance of CMMPS lay the foundation
for analyzing the problem-solving cognitive process.

Based on the cognitive model, an ACT-R model of typical
mathematical problems in primary school was constructed, and a
cognitive simulation of mathematical problem solving in primary
school was implemented. The problem-solving cognitive
simulation was conducted via the oral reporting method.
According to the constructed cognitive model CMMPS, the
problem-solving cognitive process of two kinds of typical
problems of elementary mathematics were analyzed, namely, the
“mode” and “addition with different denominators,” and used the
Lisp programming language to write the cognitive program to
perform the ACT-R simulation. Six students in the fifth and sixth
grades of a primary school were tested by the oral reporting
method. Coding and analysis of the oral report data and
comparisons with cognitive simulations revealed that the two
were consistent.



(3)

The application of cognitive analysis and simulation in
mathematics teaching is introduced. First, the design basis and
principles of the mathematical inquiry problem are proposed
based on the cognitive process, and the design process and
method are presented. On this basis, a typical inquiry question is
designed for all knowledge points of fourth-grade mathematics.
The empirical research results for classroom inquiry teaching
showed that students’ mathematical reasoning ability, especially
those with poor mathematical reasoning ability, improved
significantly after the use of typical inquiry questions.

The method and process of “one-on-one” cognitive diagnosis of the
ACT-R model, which is based on an elementary school mathematics
problem, were subsequently proposed, and the interaction between
students who had difficulty in mathematics learning and mathematics
classrooms was analyzed. The “one-on-one” method is a teaching and
diagnostic method that emphasizes the process of learning; meets the
different ability levels of children and their future levels of
development; is combined with a dynamic assessment; considers the
assessment of learning outcomes and learning process analysis;
combines the evaluation functions of comprehensive identification and
classification, diagnosis and prescription; and provides timely and
appropriate feedback to the students in the performance of the process.
Students are guided to gradually solve the problem to achieve the goal.
During the experiment, the typical problems of “mode” and “cylindrical
flank area” were designed, and 118 typical oral test questions for 28
students in the fifth grade and 146 oral test reports for 50 students in
the sixth grade were recorded. The characteristics of the cognitive
process at each stage of problem solving and the typical student’s
cognitive process at different stages of problem solving were recorded
and analyzed. The results revealed that the effects of diagnosis and
intervention were significant and then their significance for
mathematics teaching were expounded.

Finally, based on an analysis of the existing methods of classroom
interaction analysis, in this book we proposed a framework for



classroom cognitive interaction analysis and selected the typical

classroom interaction sequence in “from the perspective of different

directions” in middle school (seventh grade) mathematics textbook for
cognitive simulation. According to the analysis and simulation results of
classroom interaction cognition, three suggestions for classroom
teaching were proposed to help teachers design more effective teaching
methods.

In summary, the core of this book focuses on the construction of a
cognitive model for solving mathematical problems in primary school.
The main contribution is to prove the effectiveness of cognitive models
using computer simulation and oral report experiments. Using “one-on-
one” diagnosis and intervention teaching practices, a cognitive model
was applied in mathematics teaching. The analysis of the problem-
solving cognitive process helps reveal the learning process and ensures
effective learning.

A comprehensive analysis of the work presented in this book and
the main innovations are as follows:

3 . . .
Using the Polya mathematical problem-solving model, we refine
the problem-solving phase, construct a cognitive model of
elementary school mathematics problem solving, and propose an
analytical method for solving the ACT-R model in the context of
elementary mathematics.

Polya presented a stage model for mathematical problem solving,
which is suitable for all mathematical problems, but the internal
processes of each stage were not discussed. To address this
shortcoming, this research comprehensively used the research results
of cognitive psychology, brain science and cognitive neuroscience to
further refine Polya’s mathematical problem-solving model and
constructed a cognitive model of problem solving for primary school
mathematics to analyze problem-solving process. This model involves
mapping the cognitive process, writing a cognitive program and
performing the simulation in ACT-R. The results of the simulation were
consistent with the results of the oral report data.

(2) Based on the ACT-R model of typical problems in primary school
mathematics, the “one-on-one” approach was used to diagnose



and conduct interventions for math problem-solving students,
resulting in accurate diagnoses and significant intervention
effects.

Given that learning evaluations emphasize results and ignore the
learning process, this research studied a cognitive model, which is
based on an analysis of the cognitive process of mathematical problem
solving in primary school. The research designed typical problems,
recorded students’ problem-solving process, solved difficult internal
processes, provided targeted hints to intervene and allowed students to
correctly answer the questions themselves. The diagnoses were correct.
The intervention effects were significant. To a certain extent, this
approach could help students with learning difficulties develop good
math thinking and problem-solving habits and cultivate their interest in
math learning.

In this book, the cognitive process of problem solving was explored.
Despite its achievements, this research has the following limitations:
(1) N .

In the cognitive simulation, although the knowledge points are
representative, the number of knowledge points used is limited,
and the number of oral reports is likewise limited.
2
) In the “one-on-one” cognitive diagnosis and intervention
experiment, only the typical “mode” and “cylindrical flank area”
problems were examined. Although the knowledge points were
representative, the research scope needs to be expanded.
3
) In the “one-on-one” cognitive diagnosis and intervention
experiment, the changes in the cognitive process of students’
problem solving in different stages were analyzed.

The analysis of the cognitive process of primary school mathematics
problem solving is a systematic, long-term work. This book focused on
the cognitive model construction, simulation and experiment and
teaching application of exploratory work. The next step will be to
expand the coverage of knowledge points to increase the number of
oral reports captured over a longer period to examine changes in
students’ cognitive processes.
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